Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

cAMP response element-binding protein 1 controls porcine ovarian cell proliferation, apoptosis, and FSH and insulin-like growth factor 1 response

A. V. Sirotkin A B H , A. Benčo A , A. Tandlmajerová A , M. Lauková C D , D. Vašíček B , J. Laurinčik A E , J. Kornhauser F , S. Alwasel G and A. H. Harrath G
+ Author Affiliations
- Author Affiliations

A Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia.

B National Agricultural and Food Centre, Research Institute for Animal Production, Hlohovecka 2, 951 41 Lužianky, Slovakia.

C Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY 10595, USA.

D Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.

E Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Liběchov, Czech Republic.

F PhosphoSitePlus Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923, USA.

G King Saud University, Department of Zoology, College of Science, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

H Corresponding author. Email: asirotkin@ukf.sk

Reproduction, Fertility and Development 30(8) 1145-1153 https://doi.org/10.1071/RD17508
Submitted: 1 December 2017  Accepted: 23 January 2018   Published: 16 February 2018

Abstract

The aim of the present study was to examine the role of cAMP response element-binding protein (CREB) and its phosphorylation in the regulation of ovarian cell proliferation and apoptosis, and of the response of proliferation and apoptosis to the upstream hormonal stimulators FSH and insulin-like growth factor (IGF) 1. In the first series of experiments, porcine ovarian granulosa cells, transfected or not with a gene construct encoding wild-type CREB1 (CREB1WT), were cultured with and without FSH (0, 1, 10 or 100 ng mL−1). In the second series of experiments, these cells were transfected or not with CREB1WT or non-phosphorylatable mutant CREB1 (CREB1M1) and cultured with and without FSH (0, 1, 10 or 100 ng mL−1) or IGF1 (0, 1, 10 and 100 ng mL−1). Levels of total and phosphorylated (p-) CREB1, proliferating cell nuclear antigen (PCNA), a marker of proliferation, and BAX, a marker of apoptosis, were evaluated by western immunoblotting and immunocytochemical analysis. Transfection of cells with CREB1WT promoted accumulation of total CREB1 within cells, but p-CREB1 was not detected in any cell group. Both CREB1WT and CREB1M1 reduced cell proliferation and apoptosis. Addition of 10 and 100 ng mL−1 FSH to non-transfected cells promoted CREB1 accumulation and apoptosis, whereas cell proliferation was promoted by all concentrations of FSH tested. FSH activity was not modified in cells transfected with either CREB1WT or CREB1M1. IGF1 at 100 ng mL−1 promoted cell proliferation, whereas all concentrations of IGF1 tested reduced apoptosis. Transfection with either CREB1WT or CREB1M1 did not modify the effects of either FSH or IGF1, although CREB1M1 reversed the effect of IGF1 on apoptosis from inhibitory to stimulatory. These observations suggest that CREB1 is involved in the downregulation of porcine ovarian cell proliferation and apoptosis. The absence of visible CREB1 phosphorylation and the similarity between the effects of CREB1WT and CREB1M1 transfection indicate that phosphorylation is not necessary for CREB1 action on these processes. Furthermore, the observations suggest that FSH promotes both ovarian cell proliferation and apoptosis, whereas IGF1 has proliferation-promoting and antiapoptotic properties. The effect of FSH on CREB1 accumulation and the ability of CREB1M1 to reverse the effects of IGF1 on apoptosis indicate that CREB1 is a mediator of hormonal activity, but the inability of either CREB1WT or CREBM1transfection to modify the primary effects of FSH and IGF1 suggest that CREB1 and its phosphorylation do not mediate the action of these hormones on ovarian cell proliferation and apoptosis.

Additional keywords: CREB1, ovary, phosphorylation.


References

Alper, M. M., and Fauser, B. C. (2017). Ovarian stimulation protocols for IVF: is more better than less? Reprod. Biomed. Online 34, 345–353.
Ovarian stimulation protocols for IVF: is more better than less?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsFGksLs%3D&md5=8aad2b86220dee83278166cdba8945fcCAS |

Astort, F., Repetto, E. M., Rocha-Viegas, L., Mercau, M. E., Puch, S. S., Finkielstein, C. V., Pecci, A., and Cymeryng, C. B. (2016). Role of CREB on heme oxygenase-1 induction in adrenal cells: involvement of the PI3K pathway. J. Mol. Endocrinol. 57, 113–124.
Role of CREB on heme oxygenase-1 induction in adrenal cells: involvement of the PI3K pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslOlt73E&md5=b11e556c2337faa636cdf981308fe781CAS |

Chowdhury, I., Tharakan, B., and Bhat, G. K. (2006). Current concepts in apoptosis: the physiological suicide program revisited. Cell. Mol. Biol. Lett. 11, 506–525.
Current concepts in apoptosis: the physiological suicide program revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2lurY%3D&md5=9888bb9c0c9085973b3135e18401d8a8CAS |

Du, X. H., Zhou, X. L., Cao, R., Xiao, P., Teng, Y., Ning, C. B., and Liu, H. L. (2015). FSH-induced p38-MAPK-mediated dephosphorylation at serine 727 of the signal transducer and activator of transcription 1 decreases Cyp1b1 expression in mouse granulosa cells. Cell. Signal. 27, 6–14.
FSH-induced p38-MAPK-mediated dephosphorylation at serine 727 of the signal transducer and activator of transcription 1 decreases Cyp1b1 expression in mouse granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVart7nN&md5=a68a349adbdd6a133d639dac3914a103CAS |

Dwarki, V. J., Montminy, M., and Verma, I. M. (1990). Both the basic region and the ‘leucine zipper’ domain of the cyclic AMP response element binding (CREB) protein are essential for transcriptional activation. EMBO J. 9, 225–232.
| 1:CAS:528:DyaK3cXhtlemsLw%3D&md5=1b68f0578a84810e5459367136e9076cCAS |

Fang, W. L., Lee, M. T., Wu, L. S., Chen, Y. J., Mason, J., Ke, F. C., and Hwang, J. J. (2012). CREB coactivator CRTC2/TORC2 and its regulator calcineurin crucially mediate follicle-stimulating hormone and transforming growth factor β1 upregulation of steroidogenesis. J. Cell. Physiol. 227, 2430–2440.
CREB coactivator CRTC2/TORC2 and its regulator calcineurin crucially mediate follicle-stimulating hormone and transforming growth factor β1 upregulation of steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xisl2rtL0%3D&md5=b6c3a8871c34d05a46688edec4bf21c2CAS |

Fitzpatrick, S. L., and Richards, J. S. (1994). Identification of a cyclic adenosine 3′,5′-monophosphate-response element in the rat aromatase promoter that is required for transcriptional activation in rat granulosa cells and R2C Leydig cells. Mol. Endocrinol. 8, 1309–1319.
| 1:CAS:528:DyaK2MXhvF2hs7g%3D&md5=274eca6e8b11ae5bb731e1cf778c6301CAS |

Ghosh, S., Lu, Y., and Hu, Y. (2008). A role of CREB in BRCA1 constitutive promoter activity and aromatase basal expression. Int. J. Biomed. Sci. 4, 260–265.
| 1:CAS:528:DC%2BD1MXjsVertL8%3D&md5=6911bbe8f2c87d5a21e1678317b985f1CAS |

Gubbay, O., Rae, M. T., McNeilly, A. S., Donadeu, F. X., Zeleznik, A. J., and Hillier, S. G. (2006). cAMP response element-binding (CREB) signalling and ovarian surface epithelial cell survival. J. Endocrinol. 191, 275–285.
cAMP response element-binding (CREB) signalling and ovarian surface epithelial cell survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eju7fN&md5=9a4f986436ecdeddff1b0bfd57d6ebccCAS |

Guthrie, H. D., and Garrett, W. M. (2001). Apoptosis during folliculogenesis in pigs. Reprod. Suppl. 58, 17–29.
| 1:CAS:528:DC%2BD38XitFent78%3D&md5=da7647333050cfb2cc4afbbe44d9ed62CAS |

Ha, J. H., Ward, J. D., Varadarajalu, L., Kim, S. G., and Dhanasekaran, D. N. (2014). The gep proto-oncogene Gα12 mediates LPA-stimulated activation of CREB in ovarian cancer cells. Cell. Signal. 26, 122–132.
The gep proto-oncogene Gα12 mediates LPA-stimulated activation of CREB in ovarian cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVagtr7K&md5=960089b59893aa9186602c007eee3d96CAS |

Hammond, J. M., and English, H. F. (1987). Regulation of deoxyribonucleic acid synthesis in cultured porcine granulosa cells by growth factors and hormones. Endocrinology 120, 1039–1046.
Regulation of deoxyribonucleic acid synthesis in cultured porcine granulosa cells by growth factors and hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlagtbg%3D&md5=34dc03bb4c140d880f3837d63fc3fff1CAS |

He, P. J., Fujimoto, Y., Yamauchi, N., and Hattori, M. A. (2006). Real-time monitoring of cAMP response element binding protein signaling in porcine granulosa cells modulated by ovarian factors. Mol. Cell. Biochem. 290, 177–184.
Real-time monitoring of cAMP response element binding protein signaling in porcine granulosa cells modulated by ovarian factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSitb%2FK&md5=0106e9c4a27a2242b3f75191472277daCAS |

Hunzicker-Dunn, M. E., Lopez-Biladeau, B., Law, N. C., Fiedler, S. E., Carr, D. W., and Maizels, E. T. (2012). PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc. Natl Acad. Sci. USA 109, E2979–E2988.
PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2ktbbL&md5=229e3adaf4ce251328ec034d14264cf2CAS |

Kolesarova, A., Sirotkin, A. V., Mellen, M., and Roychoudhury, S. (2015). Possible intracellular regulators of female sexual maturation. Physiol. Res. 64, 379–386.
| 1:CAS:528:DC%2BC2MXhs1SgurbK&md5=ae5abbffd9633508df8ddbfcf597f9ebCAS |

Kornhauser, J. M., Cowan, C. W., Shaywitz, A. J., Dolmetsch, R. E., Griffith, E. C., Hu, L. S., Haddad, C., Xia, Z., and Greenberg, M. E. (2002). CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221–233.
CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Gkt7c%3D&md5=c53ba42227879bb1ad312a1a4866c434CAS |

LaVoie, H. A. (2017). Transcriptional control of genes mediating ovarian follicular growth, differentiation, and steroidogenesis in pigs. Mol. Reprod. Dev. 84, 788–801.
Transcriptional control of genes mediating ovarian follicular growth, differentiation, and steroidogenesis in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXpsVCnu7w%3D&md5=a702a7ad5490b642e721ec21aa53fc42CAS |

Linnerth, N. M., Greenaway, J. B., Petrik, J. J., and Moorehead, R. A. (2008). cAMP response element-binding protein is expressed at high levels in human ovarian adenocarcinoma and regulates ovarian tumor cell proliferation. Int. J. Gynecol. Cancer 18, 1248–1257.
cAMP response element-binding protein is expressed at high levels in human ovarian adenocarcinoma and regulates ovarian tumor cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FptF2htA%3D%3D&md5=82efc74ddf3f9191d6ecc272cc0aefa0CAS |

Liu, B., Barbosa-Sampaio, H., Jones, P. M., Persaud, S. J., and Muller, D. S. (2012). The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of β-cells. PLoS One 7, e45711.
The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of β-cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGhtbrM&md5=7f8d6442fbbac2c4aa0b7844ac0f4ff4CAS |

Manna, P. R., Dyson, M. T., Eubank, D. W., Clark, B. J., Lalli, E., Sassone-Corsi, P., Zeleznik, A. J., and Stocco, D. M. (2002). Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol. Endocrinol. 16, 184–199.
Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVChtw%3D%3D&md5=b7c550a6c86cb0b3e8266f111a72adf3CAS |

Manna, P. R., Chandrala, S. P., Jo, Y., and Stocco, D. M. (2006a). cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation. J. Mol. Endocrinol. 37, 81–95.
cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1WjsbY%3D&md5=38eba39d1017b823afb6a5aa9104d7f3CAS |

Manna, P. R., Chandrala, S. P., King, S. R., Jo, Y., Counis, R., Huhtaniemi, I. T., and Stocco, D. M. (2006b). Molecular mechanisms of insulin-like growth factor-I mediated regulation of the steroidogenic acute regulatory protein in mouse Leydig cells. Mol. Endocrinol. 20, 362–378.
Molecular mechanisms of insulin-like growth factor-I mediated regulation of the steroidogenic acute regulatory protein in mouse Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKmtbc%3D&md5=ea4c5f83ee4fedda04f6d77dbc5bda48CAS |

McNatty, K. P., Reader, K., Smith, P., Heath, D. A., and Juengel, J. L. (2007). Control of ovarian follicular development to the gonadotrophin-dependent phase: a 2006 perspective. Soc. Reprod. Fertil. Suppl. 64, 55–68.
| 1:CAS:528:DC%2BD1cXpvVyrsr0%3D&md5=460b5bff681d828eb9051d2f1be49ae9CAS |

Osborn, M., and Isenberg, S. (1994). Immunocytochemistry of frozen and paraffin tissue sections. In ‘Cell Biology – A Laboratory Handbook’, Vol. 2. (Ed. J. E. Celis.) pp. 361–367. (Academic Press: New York.)

Puri, P., Little-Ihrig, L., Chandran, U., Law, N. C., Hunzicker-Dunn, M., and Zeleznik, A. J. (2016). Protein kinase A: a master kinase of granulosa cell differentiation. Sci. Rep. 6, 28132.
Protein kinase A: a master kinase of granulosa cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVKitr%2FP&md5=c07dd67db53121bde3f068e923212dd5CAS |

Quirk, S. M., Cowan, R. G., Harman, R. M., Hu, C. L., and Porter, D. A. (2004). Ovarian follicular growth and atresia: the relationship between cell proliferation and survival. J. Anim. Sci. 82, E40–E52.
Ovarian follicular growth and atresia: the relationship between cell proliferation and survival.Crossref | GoogleScholarGoogle Scholar |

Ranzenigo, G., Caloni, F., Cremonesi, F., Aad, P. Y., and Spicer, L. J. (2008). Effects of Fusarium mycotoxins on steroid production by porcine granulosa cells. Anim. Reprod. Sci. 107, 115–130.
Effects of Fusarium mycotoxins on steroid production by porcine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlyhsrs%3D&md5=f440fc2470e7ce524921bea9b90242bdCAS |

Rice, S., Elia, A., Jawad, Z., Pellatt, L., and Mason, H. D. (2013). Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: relevance to polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E1491–E1500.
Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: relevance to polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2isbnI&md5=aa869329a620ea790d7badf37f954a91CAS |

Sirotkin, A. V. (2010). Transcription factors and ovarian functions. J. Cell. Physiol. 225, 20–26.
Transcription factors and ovarian functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVaitLo%3D&md5=d986187b49135493242539897db6cf7aCAS |

Sirotkin, A. V. (2014). ‘Regulators of Ovarian Functions.’ (Nova Publishers: New York.)

Sirotkin, A. V., and Grossmann, R. (2003). Role of tyrosine kinase- and MAP kinase-dependent intracellular mechanisms in control of ovarian functions in the domestic fowl (Gallus domesticus) and in mediating effects of IGF-I. J. Reprod. Dev. 49, 99–106.
Role of tyrosine kinase- and MAP kinase-dependent intracellular mechanisms in control of ovarian functions in the domestic fowl (Gallus domesticus) and in mediating effects of IGF-I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtleru7w%3D&md5=fd0c15af5edab698ec298b059aaa69d3CAS |

Sirotkin, A. V., Sanislo, P., Schaeffer, H. J., Florkovicová, I., Kotwica, J., Bulla, J., and Hetényi, L. (2004). Thrombopoietin regulates proliferation, apoptosis, secretory activity and intracellular messengers in porcine ovarian follicular cells: involvement of protein kinase A. J. Endocrinol. 183, 595–604.
Thrombopoietin regulates proliferation, apoptosis, secretory activity and intracellular messengers in porcine ovarian follicular cells: involvement of protein kinase A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1SrtQ%3D%3D&md5=bdb72dd08eb62c943b50c37ec2a3b2a0CAS |

Sirotkin, A. V., Grossmann, R., Maria-Peon, M. T., Roa, J., Tena-Sempere, M., and Klein, S. (2006). Novel expression and functional role of ghrelin in chicken ovary. Mol. Cell. Endocrinol. 257–258, 15–25.
Novel expression and functional role of ghrelin in chicken ovary.Crossref | GoogleScholarGoogle Scholar |

Sirotkin, A. V., Ovcharenko, D., Grossmann, R., Lauková, M., and Mlyncek, M. (2009). Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 219, 415–420.
Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWjsLk%3D&md5=5cca17c2859c3db502a3607917854a77CAS |

Sirotkin, A. V., Chrenek, P., Kolesarová, A., Parillo, F., Zerani, M., and Boiti, C. (2014). Novel regulators of rabbit reproductive functions. Anim. Reprod. Sci. 148, 188–196.
Novel regulators of rabbit reproductive functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVanurfF&md5=642d0d5aa6607f60bf320854a450d4e9CAS |

Somers, J. P., DeLoia, J. A., and Zeleznik, A. J. (1999). Adenovirus-directed expression of a nonphosphorylatable mutant of CREB (cAMP response element-binding protein) adversely affects the survival, but not the differentiation, of rat granulosa cells. Mol. Endocrinol. 13, 1364–1372.
Adenovirus-directed expression of a nonphosphorylatable mutant of CREB (cAMP response element-binding protein) adversely affects the survival, but not the differentiation, of rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVChsrY%3D&md5=ccc32acd6d0285da10700d6cbaf18831CAS |

Uren, R. T., Iyer, S., and Kluck, R. M. (2017). Pore formation by dimeric bak and bax: an unusual pore? Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160218.
Pore formation by dimeric bak and bax: an unusual pore?Crossref | GoogleScholarGoogle Scholar |

Vázquez-Cuevas, F. G., Zárate-Díaz, E. P., Garay, E., and Arellano, R. O. (2010). Functional expression and intracellular signaling of UTP-sensitive P2Y receptors in theca–interstitial cells. Reprod. Biol. Endocrinol. 8, 88.
Functional expression and intracellular signaling of UTP-sensitive P2Y receptors in theca–interstitial cells.Crossref | GoogleScholarGoogle Scholar |

Wang, S. C. (2014). PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol. Sci. 35, 178–186.
PCNA: a silent housekeeper or a potential therapeutic target?Crossref | GoogleScholarGoogle Scholar |

Wang, C., Lv, X., Jiang, C., Cordes, C. M., Fu, L., Lele, S. M., and Davis, J. S. (2012). Transforming growth factor alpha (TGFα) regulates granulosa cell tumor (GCT) cell proliferation and migration through activation of multiple pathways. PLoS One 7, e48299.
Transforming growth factor alpha (TGFα) regulates granulosa cell tumor (GCT) cell proliferation and migration through activation of multiple pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKltL%2FP&md5=c755304058a81ca71e252dac7866748bCAS |

Xie, M., Li, M., Zhou, J., Ding, X., Shao, Y., Jing, J., Liu, Y., and Yao, B. (2017). Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and proliferation by activating the FSH receptor-mediated signaling pathway. Sci. Rep. 7, 180.
Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and proliferation by activating the FSH receptor-mediated signaling pathway.Crossref | GoogleScholarGoogle Scholar |

Yivgi-Ohana, N., Sher, N., Melamed-Book, N., Eimerl, S., Koler, M., Manna, P. R., Stocco, D. M., and Orly, J. (2009). Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta: alternative modes of cyclic adenosine 3′,5′-monophosphate dependent and independent regulation. Endocrinology 150, 977–989.
Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta: alternative modes of cyclic adenosine 3′,5′-monophosphate dependent and independent regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sgtrk%3D&md5=ac5671d6d193e9b535169a7427c228a4CAS |