Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

58 ISOLATION OF BOVINE TROPHOBLAST AND ITS REPROGRAMMING BY NUCLEAR TRANSFER

I. M. Saadeldin A , B. H. Kim A , B. Roibas da Torre A , O. J. Koo A , G. Jang A and B. C. Lee A
+ Author Affiliations
- Author Affiliations

Department of Theriogenology and Biothechnology, College of Veterinary Medicine and Research Center, Seoul National University, Gwanak-ru, Seoul 151-742, South Korea

Reproduction, Fertility and Development 23(1) 134-135 https://doi.org/10.1071/RDv23n1Ab58
Published: 7 December 2010

Abstract

Nuclear transfer (NT) has been used to produce many cloned offspring using several types of cells, including embryonic cells. Even though inner cell mass cells have been used as donor karyoplast for producing cloned animals, there are few studies using trophoblast. In mice, clones were born by nuclear transfer of trophoblasts from the expanded blastocyst into enucleated oocytes as a trial to show the totipotency of both inner cell mass and trophectoderm cells isolated from blastocysts (Tsunoda and Kato 1998 J. Reprod. Fertil. 113, 181–184). However, bovine trophoblast cell (TC) lines have not been used in NT to date. The purpose of this study was to elucidate whether TC as donor cell can be reprogrammed in bovine enucleated oocyte and determine the relative abundance of interferon tau (IFNτ) expression in the resulting cloned preimplantational embryos. Hatched blastocysts produced by IVF were used to isolate TCs on mouse embryonic fibroblasts treated with mitomycin C as feeder cells. TCs and adult fibroblasts (AF, control group for NT) were microinjected to perivitelline space of in vitro mature enucleated oocytes and electrically fused. Reconstructed embryos were chemically activated and cultured in a 2-step chemically defined medium. Levels of IFNτ expression in IVF-, TC-, and AF-derived blastocysts were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). IVF produced embryos were used as reference to analyze the linear progressive expression of IFNτ through mid-, expanded, and hatching blastocysts. As a result, TCs expressing IFNτ were successfully isolated and cultured on feeder layers. It grew as cell sheets of cuboidal epithelium with high proliferation capacity as a single colony originated from a small clump of cells measured 0.5 cm within 7 days of culture. TCs were reprogrammed in the enucleated oocytes to blastocyst with similar efficiency to AF (14.5% and 15.6%, respectively; P ≤ 0.05). RT-qPCR studies showed that IFNτ expression was higher in TC-derived blastocysts than IVF- and AF-derived blastocysts. Both IVF- and TC-derived blastocysts, showed progressive increase of IFNτ expression through the advancement of blastocyst development when it was compared to AF-derived blastocysts. In conclusion, using TCs expressing IFNτ as donor cell for bovine NT could increase the developmental competence of cloned embryos as indicated by progressive linear increase in IFNτ expression.

This study was supported by grants from IPET (#109023-05-1-CG000), NRF (#M10625030005-10N250300510), MKE (#2009-67-10033839, #2009-67-10033805), and BK21 program. Saadeldin I. M. is supported by Islamic Development Bank (IDB) merit scholarship, Jeddah, Saudi Arabia.