Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

221. Localisation of relaxin receptors (Rxfp1) in the uterine artery and the effects of blocking circulating relaxin on passive mechanical wall properties in the uterine artery of late pregnant rats

L. A. Vodstrcil A B , J. Novak C , M. Tare D , M. E. Wlodek B and L. J. Parry A
+ Author Affiliations
- Author Affiliations

A Zoology, University of Melbourne, Parkville, Vic., Australia.

B Physiology, University of Melbourne, Parkville, Vic., Australia.

C Biology, Walsh University, North Canton, Ohio, United States.

D Physiology, Monash University, Clayton, Vic., Australia.

Reproduction, Fertility and Development 20(9) 21-21 https://doi.org/10.1071/SRB08Abs221
Published: 28 August 2008

Abstract

During pregnancy, the uteroplacental circulation undergoes dramatic alterations to allow for the large increase in blood flow to the feto-placental unit. These alterations are achieved through several mechanisms including structural changes in the uterine artery wall and endothelium-dependent vasodilation. Small renal arteries of relaxin-deficient mice and rats have enhanced myogenic reactivity and decreased passive compliance, and are relatively vasoconstricted (Novak et al. 2001, 2006). To date, no study has identified relaxin receptors (Rxfp1) in arteries or investigated the effects of relaxin deficiency in pregnancy on uterine artery function. The aims of this current study were to: 1) localise Rxfp1 in the uterine arteries, 2) measure myogenic reactivity in small uterine arteries after relaxin treatment, and 3) test the hypothesis that blocking circulating relaxin in late pregnancy will increase uterine artery wall stiffness. We demonstrated that Rxfp1 is expressed in the uterine arteries of pregnant mice and rats. Brightfield immunohistochemistry and immunofluorescence using antibodies specific for rat Rxfp1, α-smooth muscle actin and CD31 localised Rxfp1 protein predominantly to the vascular smooth muscle in the uterine artery of pregnant rats. Administration of recombinant human H2 relaxin (4 ug/h) for 6 h or 5 days in intact and ovariectomised rats reduced myogenic reactivity of small uterine arteries in vitro. Pregnant rats were treated with a monoclonal antibody against circulating relaxin (MCA1) or control (MCAF) for 3 days (Days 17–19) and uterine arteries were mounted on a pressure myograph to assess passive mechanical wall properties. Neutralising circulating relaxin in late pregnancy resulted in a significant increase in uterine artery wall stiffness. These data demonstrate that relaxin acts on the vascular smooth muscle cells in the uterine artery and may be involved in the pregnancy-specific vascular remodelling of uterine arteries to increase vasodilation and blood flow to the uterus and placenta.

(1) Novak J et al. (2001). J Clin Invest 107: 1469–75

(2) Novak J et al. (2006). FASEB J 20: 2352–62