Expanded equine cumulus–oocyte complexes exhibit higher meiotic competence and lower glucose consumption than compact cumulus–oocyte complexes


^A Centro de Estudos de Ciência Animal/Instituto de Ciências, Tecnologias e Agroambiente; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal.

^B Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Avda. de la universidad s/n, 10003, Cáceres, Spain.

^C Department of Animal Reproduction, Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. De la Coruña, Km. 5.9, Madrid 28040, Spain.

^D Department of Microscopy, Cell Biology Laboratory, Abel Salazar Institute of Biomedical Sciences and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.

^E Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre (CCMIJU), Carretera N-521, km. 41.8. 10071, Cáceres, Spain.

^F Corresponding author. Email: bea_macias@hotmail.com
Fig. S1. Classification of equine COCs obtained by follicular scraping. Equine follicles were scraped and the cells present in the Petri dish as well as the COCs were carefully evaluated. If any signs of expansion were found in the dish or cumulus, the oocytes were classified as expanded. (A) compact COC; (B) and (C) expanded COCs. The micrographs shown were obtained at 20×.