Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

156 IN VITRO DEVELOPMENT OF BOVINE MORULAE PRODUCED AND/OR CULTURED WITH ACTIVIN

B. Trigal A , E. Gómez A , C. Diez A , J. N. Caamaño A , I. Molina A , S. Carrocera A , D. Martín A and M. Muñoz A

SERIDA, Área de Genética y Reproducción, Gijón, Spain

Reproduction, Fertility and Development 22(1) 236-236 http://dx.doi.org/10.1071/RDv22n1Ab156
Published: 8 December 2009

Abstract

We reported that the presence of activin during in vitro culture improves embryo development without changing the cell distribution in the blastocyst (Díez et al. 2009 AETE in press). In the present work, we aimed to analyze the morula stage as a putative milestone to activin exert differential effects. Day -5 morulae were produced with IVMFC oocytes from abattoir ovaries, using SOF with amino acids, myo-inositol, and 3 g L-1 of BSA as a culture medium. Embryo culture contained 10 ng mL-1 or 0 ng mL-1 of activin from Day -3 to Day -5. Early morulae (n = 543 out of 1099 cultured oocytes) were selected and subsequently cultured with or without 10 ng mL-1 of activin up to Day -8. Embryo development was daily monitored and cells differentially counted in Day -8 expanded blastocysts. (Thouas et al. 2001 Reprod. Biomed. 2001 3, 25-29). Data were analyzed by general linear model and presented as least squares means ± SEM. Activin from Days 3 to 5 did not change Day -5 morulae rates (P > 0.8). In morulae produced without activin (Days 5 to 8 and control), a treatment with activin from Days 5 to 8 improved total blastocyst rates v. controls, both in Day -7 and Day -8 (50.9 ± 3.6 v. 32.6 ± 3.6 and 60.8 ± 2.9 v. 42.3 ± 2.9, respectively; P < 0.01). Similarly, Day -7 expansion rates with activin (Days 5 to 8) were higher than controls (14.6 ± 1.8 v. 8.6 ± 1.8; P < 0.03). However, the above effects were not the same as those observed in morulae produced with activin (Days 3 to 5 and Days 3 to 8), where blastocyst development between activin treatment and controls only significantly differed in expansion rates on Day -7 (14.9 ± 1.8 v. 5.8 ± 1.8, respectively; P < 0.03). Morulae treated with activin (Days 5 to 8) yielded Day -7, total and expanded blastocyst rates, higher than morulae produced with activin (Days 3 to 5) (50.9 ± 3.6 v. 37.4 ± 3.6 and 14.6 ± 5.8 v. 5.8 ± 1.8, respectively; P < 0.03). Expansion rates on Day -8 were numerically higher within morulae produced and/or treated with activin (Days 3 to 8, Days 5 to 8, and Days 3 to 5) (values between 26.7 ± 2.6 and 27.4 ± 2.6) than in controls without activin at any time (19.2 ± 2.6) (P > 0.05). Trophectoderm (TE) cell numbers were reduced in embryos produced and/or treated with activin (Days 3 to 8, Days 3 to 5, and Days 5 to 8) (values between 109.4 ± 7.6 and 115.3 ± 7.9) as compared with untreated controls (141.2 ± 10.1) (P < 0.05). In morulae produced without activin, total cell counts were lower with activin being present from Day -5 to Day -8 (154.0 ± 8.8 v. 128.4 ± 7.2; P < 0.05). Inner cell mass (ICM) and ICM/total cell ratio were not affected by the presence of activin (P > 0.05). Activin did not change Day -5 morulae rates, although subsequent blastocyst development was in part affected by the presence of activin before the morula stage. Interestingly, improvements in blastocyst development, including expansion rates, triggered by activin led to reduced TE and unaltered ICM cell counts, suggesting that activin inhibits TE differentiation.

Support: Cajastur (B. Trigal). MCINN: M. Muñoz (RYC08-03454); D. Martín (PTA2007-0268-I); INIA (I. Molina); Project HF2007-0126.


Abstract Export Citation