Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology


S. Matoba A , S. Mamo B , E. Gallagher B , A. G. Fahey B , T. Fair B and P. Lonergan B

A National Livestock Breeding Center, Nishigo, Fukushima, Japan;

B University College Dublin, Belfield, Dublin, Ireland

Reproduction, Fertility and Development 22(1) 299-299
Published: 8 December 2009


The ability to culture oocytes and embryos in an individually identifiable manner facilitates the study of the relationship between follicle param- eters and oocyte development, in order to identify markers of competent oocytes. The aim of this study was to examine the predictive value of intrafollicular steroid concentrations and granulosa cell transcript abundance on the ability of immature bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles (n = 214, 11 replicates, 49 animals) were dissected from the ovaries of slaughtered animals. Following measure- ment of diameter, follicles were carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through maturation, fertilization, and culture on the cell adhesive Cell-Tak (20 oocytes/100 μL; Matoba and Lonergan 2009 Reprod. Fertil. Dev. 21, 160). Cleavage and blastocyst rates were assessed on Days 2 and 9, respectively. Follicular fluid was recovered and stored at -80°C until analysis for concentrations of the steroids estradiol, progesterone, and testosterone by RIA. Granulosa cells were collected from each follicle for analysis of gene expression by quantitative RT-PCR. Primers were designed for 7 target genes (AMH, CYP19A, ESR1, ESR2, FSHR, HSD3B1 and LHCGR) and 2 reference genes (PPIA and H2AZ). Transcript abundance of target genes in granulosa cells associated with embryos that cleaved and developed to the blastocyst stage (competent) and those that cleaved but failed to develop (incompetent) was examined. Mean steroid concentrations were compared by ANOVA and Spearman correlations, and logistical regression were used to test the relationship between follicle size and steroid con- centration and the ability of steroid concentration to predict developmental competence. Gene expression data were analyzed using the delta-delta CT (cycle threshold) method. Values were normalized to the average values of the reference genes and means were compared by the Student’s t-test In total, 79.1% of oocytes cleaved after IVF and 28.3% developed to the blastocyst stage. The mean (±SEM) follicular concentrations of testosterone (62.8 ± 4.8 ng mL-1), progesterone (616.8 ± 31.9 ng mL-1), or estradiol (14.4 ± 2.4 ng mL-1 were not different (P ≥ 0.05) between competent and incompetent oocytes. Follicular diameter was negatively correlated with testosterone, progesterone, testosterone:estradiol, and pro- gesterone:estradiol (P ≤ 0.01) and positively correlated with estradiol (P ≤ 0.01). Logistical regression analysis showed that steroid concentrations or the ratio of steroids were not satisfactory predictors of oocyte competence. Transcript abundance of AMH, ESR1, ESR2, FSHR, and HSD3B1 was significantly higher (P ≤ 0.05) in granulosa cells associated with competent compared with incompetent oocytes. In conclusion, follicular steroid concentrations were not associated with oocyte development. In contrast, granulosa cell gene expression may be a useful predictor of oocyte competence.

Supported by Science Foundation Ireland (07/SRC/B1156).

Abstract Export Citation