Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

435 REDUCTION OF CELL CYCLE LENGTH AND INCREASE IN S-PHASE BY GROWTH FACTORS IN PIG FETAL FIBROBLASTS

S. Waghmare A and B. Mir A

Indiana University, Indianapolis, IN, USA

Reproduction, Fertility and Development 22(1) 374-375 http://dx.doi.org/10.1071/RDv22n1Ab435
Published: 8 December 2009

Abstract

Gene targeting in primary somatic cells is inefficient compared with embryonic stem cells. This is because of a slow rate of cell proliferation, fewer cells in S-phase at a given time point under normal culture conditions, and low rate of homologous recombination. Homologous recombination occurs mainly in late S-phase and increase in gene targeting efficiency has been reported in S-phase synchronized cells in bovine and rhesus macaque fetal fibroblasts. In this study we tested several growth factors: platelet-derived growth factor (PDGF), tumor necrosis factor a (TNFα), epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor β1 (TGFβ1), insulin-like growth factor 1 (ILGF-1) and insulin-like growth factor II (ILGF-II) individually and in various combinations to see the effect on cell proliferation rate. Each experimental set consisted of 3 replicates. TGFβ1-, ILGF1-, ILGFII-, and FGF-treated cells grew very slowly compared with untreated cells. However, a combination of 3 growth factors: PDGF (15 ng mL-1), EGF (50 ng mL-1) and TNFa (100 pg mL-1), herein referred to as the cocktail, accelerated cell proliferation rate and reduced cell cycle length on average from 24.5 ± 0.2 to 20.4 ± 0.5 h with no significant change in number of cells in S-phase. Further, cells grown in the presence of the cocktail showed changes in morphology. The cells became spindle-shaped and occupied less surface area per cell compared with untreated cells. Importantly, cocktail-treated cells maintained a normal karyotype without any chromosomal abnormality. Thymidine has been used successfully to block various cell types in S-phase but it failed to synchronize these cells in S-phase in the concentration range of 2 to 10 mM for 24 to 48 h. However, serum starvation (0.2% fetal bovine serum) for 48 h blocked the cell proliferation rate effectively and synchronized cells in G0 phase (80-82% cells). After releasing from the block, cells were grown in the absence or presence of cocktail and cell cycle analysis was done at different time points by flow cytometry. Each time point was repeated 3 times. We observed the maximum number of cells in S-phase at 22 to 23 h (61.33% ± 7.77 in cocktail-treated cells v. 41.7% ± 3.28 in untreated cells). In summary, the cocktail-treated cells showed changes in cell morphology, higher proliferation rate, reduction in cell cycle length by 16.7%, and maximum percentage of cells in S-phase following serum starvation but maintained normal karyotypes. This high proliferation rate, reduction in cell cycle length, and maximum number of cells in S-phase should be very helpful in increasing the efficiency of gene-targeting in pig fetal fibroblasts.


Abstract Export Citation