Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

206 EFFECT OF ADDITION OF FOLLICULAR FLUID OR GROWTH DIFFERENTIATION FACTOR-9 ON IN VITRO MATURATION OF PORCINE OOCYTES DENUDED 20 h AFTER THE START OF IN VITRO MATURATION

P. Ferré A , T. T. M. Bui A , M. T. Tran A , T. Wakai A and H. Funahashi A
+ Author Affiliations
- Author Affiliations

Department of Animal Science, Okayama University, Okayama, Japan

Reproduction, Fertility and Development 28(2) 234-234 https://doi.org/10.1071/RDv28n2Ab206
Published: 3 December 2015

Abstract

The interruption of communication between oocyte and cumulus cells (CC) can trigger meiotic resumption and exogenous additives, such as follicular fluid (FF) and growth differentiation factor-9 (GDF9), can improve oocyte quality and the developmental competence. This study was undertaken to examine if the absence and presence of FF from medium follicles (MF; 3–6 mm in diameter) or recombinant human GDF9 (Biovision, Milpitas, CA, USA) during the first or/and second half of in vitro maturation (IVM) had any effects on IVM of oocytes from small follicles (SF; 0.5–2 mm in diameter) or MF when the oocytes were denuded at 20 h after the start of IVM. Cumulus-oocyte complexes (COC) were aspirated from SF or MF of slaughtered prepubertal gilt ovaries. Groups of ~30 COC were cultured in a 300-μL drop of porcine oocyte medium containing 50 µM β-mercaptoethanol (mPOM) with or without 10% (v/v) FF and/or 100 ng mL–1 GDF9 at 39°C and 5% CO2 in air. During the first 20 h after the start of IVM, the medium was supplemented with 1 mM dibutyryl c-AMP, 10 IU mL–1 eCG and 10 IU mL–1 hCG. After the first period of IVM, the CC surrounding the oocytes were removed and the denuded oocytes continued culture for IVM with or without FF or/and GDF9 in the absence of dibutyryl c-AMP and gonadotropins in the same medium for another 24 h. At the end of IVM, meiotic progression of the oocytes was examined by DAPI staining. Statistical analyses from at least 4 replicates data were performed by a 2-way ANOVA and a Tukey’s multiple comparisons test. Removal of CC 20 h after the start of IVM significantly improved the incidence of mature oocytes derived from SF (59.2–64.1% v. 41.6–43.1% in controls, P < 0.05) but not from MF (73.1–78.5% v. 70.6–71.8% in controls), whereas regardless of supplementation with FF or GDF9, the maturation rates were always significantly higher in the denuded oocytes from MF (72.4–83.6%) than SF (57.8–66.2%; P < 0.05). Despite of the origin of COC (SF or MF), maturation rates of oocytes denuded 20 h after the start of IVM were not affected by supplementation with FF or GDF9 during the first and/or second half of IVM (P > 0.05). In summary, CC removal from COC 20 h after the start of IVM promotes nuclear maturation of oocytes from SF. Exogenous additives such as GDF9 and follicular fluid from MF do not seem to affect the promotion of nuclear maturation in our experimental conditions.