Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Fluoxetine treatment of prepubertal male rats uniformly diminishes sex hormone levels and, in a subpopulation of animals, negatively affects sperm quality

María E. Ayala A , Ayari Gonzáles A , Rodrigo M. Olivarez A and Andrés Aragón-Martínez B C
+ Author Affiliations
- Author Affiliations

A Unidad de Investigación en en Biología de la Reproducción, Laboratorio de Pubertad, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), AP 9-020, C.P. 15000, Distrito Federal, México.

B Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Paseo de los Barrios Número 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México.

C Corresponding author. Email: armandres@gmail.com

Reproduction, Fertility and Development 30(10) 1329-1341 https://doi.org/10.1071/RD17384
Submitted: 29 January 2017  Accepted: 17 March 2018   Published: 30 April 2018

Abstract

Fluoxetine (Flx) is a selective serotonin reuptake inhibitor that alters the male reproductive system when administered at the adult stage or after maternal exposure. In the present study we evaluated the effects of Flx administration on reproductive parameters during juvenile–peripubertal development when treated male rats reached adulthood. Groups of rats were treated daily with Flx (5 mg kg−1, i.p.) or saline (0.9% NaCl), or were left untreated. Rats were treated between 30 and 53 days of age and were killed at 65 days of age. Serotonin concentrations were determined in the hypothalamus, hypophysis and testis. Gonadotrophins, sex steroids and sperm quality (membrane integrity, sperm with functional mitochondria, sperm density, sperm motility and morphological abnormalities) were also evaluated. Flx did not affect bodyweight, but significantly diminished LH, FSH, progesterone and testosterone serum concentrations. After graphical analysis, a subgroup of rats was identified whose sperm quality parameters were greatly affected by Flx. In the present study we show that Flx administered to juvenile rats disrupts the hypothalamic–hypophyseal–testicular axis and its effects on sperm quality are not homogeneous in adults. In contrast, Flx altered concentrations of gonadotrophins and sexual steroids in all treated rats. These results suggest caution should be exercised in the prescription of Flx to prepubertal males.

Additional keywords: FSH, LH, progesterone, serotonin.


References

Afkhami-Ardekani, M., and Sedghi, H. (2005). Effect of fluoxetine on weight reduction in obese patients. Indian J. Clin. Biochem. 20, 135–138.
Effect of fluoxetine on weight reduction in obese patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislagtrk%3D&md5=2806e38c2243cfa3e0377c648787b65eCAS |

Aggarwal, A., Jethani, S., Rohatgi, R., and Kalra, J. (2012). Effects of fluoxetine on testis of albino rats – a histological assessment. Int. J. Sci. Eng. Res. 3, 1–5.

Aggarwal, A., Jethani, S., Rohatgi, R., and Kalra, J. (2013). Effect of fluoxetine on epididymis of albino rats: a histological study. Int. J. Sci. Eng. Res. 4, 1457–1462.

Aggarwal, A., Jethani, S. L., Rohatgi, R. K., and Kalra, J. (2016). Selective serotonin re-uptake inhibitors (SSRIs) induced weight changes: a dose and duration dependent study on albino rats. J. Clin. Diagn. Res. 10, AF01–AF03.
| 1:CAS:528:DC%2BC28XitFeqs7%2FN&md5=2073a59efd865e1abf85262e4c163650CAS |

Aguilar, R., Antón, F., Bellido, C., Aguilar, E., and Gaytan, F. (1995). Testicular serotonin is related to mast cells but not to Leydig cells in the rat. J. Endocrinol. 146, 15–21.
Testicular serotonin is related to mast cells but not to Leydig cells in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVylsb0%3D&md5=12f4ec42ac61b8ed64952aa2b68c283dCAS |

Altschuler, S. J., and Wu, L. F. (2010). Cellular heterogeneity: do differences make a difference? Cell 141, 559–563.
Cellular heterogeneity: do differences make a difference?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ehurc%3D&md5=8a3b23dff73d511f0d613889dbf116e5CAS |

Alzahrani, H. A. (2012). Sister chromatid exchanges and sperm abnormalities produced by antidepressant drug fluoxetine in mouse treated in vivo. Eur. Rev. Med. Pharmacol. Sci. 16, 2154–2161.
| 1:STN:280:DC%2BC3s3lvVOgtQ%3D%3D&md5=f7d2591db38be5f4133563b8cf78f455CAS |

Aragón, M. A., Ayala, M. E., Marín, M., Avilés, A., Mensumura, D., and Domínguez, R. (2005). Serotoninergic system blockage in the prepubertal rat inhibits spermatogenesis development. Reproduction 129, 717–727.
Serotoninergic system blockage in the prepubertal rat inhibits spermatogenesis development.Crossref | GoogleScholarGoogle Scholar |

Arias, P., Szwarcfarb, B., de Rondina, D. C., Carbone, S., Sverdlik, R., and Moguilevsky, J. A. (1990). In vivo and in vitro studies on the effect of the serotoninergic system on luteinizing hormone and luteinizing hormone-releasing hormone secretion in prepubertal and peripubertal female rats. Brain Res. 523, 57–61.
In vivo and in vitro studies on the effect of the serotoninergic system on luteinizing hormone and luteinizing hormone-releasing hormone secretion in prepubertal and peripubertal female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltV2rs7Y%3D&md5=e1f7a7e365959970b6c11a8cc7fe1907CAS |

Ayala, M. E., Monroy, J., Morales, L., Castro, M. E., and Domínguez, R. (1998). Effects of a lesion in the dorsal raphe nuclei performed during the juvenile period of the female rat, on puberty. Brain Res. Bull. 47, 211–218.
Effects of a lesion in the dorsal raphe nuclei performed during the juvenile period of the female rat, on puberty.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FotFCmsg%3D%3D&md5=02071e6a69bc9119a9c5d4166841bd9cCAS |

Ayala, M. E., Velázquez, D. E., Mendoza, J. L., Monroy, J., Domínguez, R., Cárdenas, M., and Aragón, A. (2015). Dorsal and medial raphe nuclei participate differentially in reproductive functions of the male rat. Reprod. Biol. Endocrinol. 13, 132.
Dorsal and medial raphe nuclei participate differentially in reproductive functions of the male rat.Crossref | GoogleScholarGoogle Scholar |

Azmitia, E. C. (2001). Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 56, 413–424.
Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFylt78%3D&md5=1208250b4f534fe6eba0aeb28ae29254CAS |

Bataineh, H. N., and Daradka, T. (2007). Effects of long-term use of fluoxetine on fertility parameters in adult male rats. Neuroendocrinol. Lett. 28, 321–325.
| 1:CAS:528:DC%2BD2sXosVyntL4%3D&md5=7342147454df917fc5a890464df84499CAS |

Becú-Villalobos, D., Lacau-Mengido, I. M., and Libertun, C. (1990). Ontogenic studies of the neural control of adenohypophyseal hormones in the rat: gonadotropins. Cell. Mol. Neurobiol. 10, 473–484.
Ontogenic studies of the neural control of adenohypophyseal hormones in the rat: gonadotropins.Crossref | GoogleScholarGoogle Scholar |

Beyer, C. E., Boikess, S., Luo, B., and Dawson, L. A. (2002). Comparison of the effects of antidepressants on norepinephrine and serotonin concentrations in the rat frontal cortex: an in-vivo microdialysis study. J. Psychopharmacol. 16, 297–304.
Comparison of the effects of antidepressants on norepinephrine and serotonin concentrations in the rat frontal cortex: an in-vivo microdialysis study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFarsw%3D%3D&md5=3ece1be8dc3f086ab61d71387c490644CAS |

Blázquez, A., Mas, S., Plana, M. T., Gassó, P., Méndez, I., Torra, M., Arnaiz, J. A., Lafuente, A., and Lázaro, L. (2014). Plasma fluoxetine concentrations and clinical improvement in an adolescent sample diagnosed with major depressive disorder, obsessive–compulsive disorder, or generalized anxiety disorder. J. Clin. Psychopharmacol. 34, 318–326.
Plasma fluoxetine concentrations and clinical improvement in an adolescent sample diagnosed with major depressive disorder, obsessive–compulsive disorder, or generalized anxiety disorder.Crossref | GoogleScholarGoogle Scholar |

Boothman, L. J., Mitchell, S. N., and Sharp, T. (2006). Investigation of the SSRI augmentation properties of 5-HT(2) receptor antagonists using in vivo microdialysis. Neuropharmacology 50, 726–732.
Investigation of the SSRI augmentation properties of 5-HT(2) receptor antagonists using in vivo microdialysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1KmtLg%3D&md5=06e95774e3283cdd39a6c5b7f6b2cdafCAS |

Bouet, V., Klomp, A., Freret, T., Wylezinska-Arridge, M., Lopez-Tremoleda, J., Dauphin, F., Boulouard, M., Booij, J., Gsell, W., and Reneman, L. (2012). Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment. Psychopharmacology (Berl.) 221, 329–339.
Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12gtr7F&md5=87fca22543f4983e7a267f8027d01d89CAS |

Brenner, B., Harney, J. T., Ahmed, B. A., Jeffus, B. C., Unal, R., Mehta, J. L., and Kilic, F. (2007). Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 102, 206–215.
Plasma serotonin levels and the platelet serotonin transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVWjur4%3D&md5=348680bfe30f172bd25f0db55ee77e94CAS |

Caccia, S., Cappi, M., Fracasso, C., and Garattini, S. (1990). Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology (Berl.) 100, 509–514.
Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFWgtLw%3D&md5=7e3229460c5faccfb046386482a12fa4CAS |

Campos, M. B., Vitale, M. L., Calandra, R. S., and Chiocchio, S. R. (1990). Serotonergic innervation of the rat testis. J. Reprod. Fertil. 88, 475–479.
Serotonergic innervation of the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslaqsLc%3D&md5=047e43591ebe7b5c1b766c13ad4b5bf0CAS |

Collin, O., Damber, J. E., and Bergh, A. (1996). 5-Hydroxytryptamine – a local regulator of testicular blood flow and vasomotion in rats. J. Reprod. Fertil. 106, 17–22.
5-Hydroxytryptamine – a local regulator of testicular blood flow and vasomotion in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVCnsA%3D%3D&md5=1c44eab6d2b6bb9a57c056e55f2b3f61CAS |

Csaba, Z., Csernus, V., and Gerendai, I. (1998). Intratesticular serotonin affects steroidogenesis in the rat testis. J. Neuroendocrinol. 10, 371–376.
Intratesticular serotonin affects steroidogenesis in the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12qtrg%3D&md5=79b7c29fdb7d1adc6df92af268946e97CAS |

Csaba, G., Kovács, P., and Pállinger, E. (2006). Hormones in the nucleus. Immunologically demonstrable biogenic amines (serotonin, histamine) in the nucleus of rat peritoneal mast cells. Life Sci. 78, 1871–1877.
Hormones in the nucleus. Immunologically demonstrable biogenic amines (serotonin, histamine) in the nucleus of rat peritoneal mast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhsl2hsbo%3D&md5=ec350db1844a4607e1566ba1a758e558CAS |

Da Silva, V., Lins, A., de Amorim, A., Ferreira, P., Deiró, D., de Oliveira, J., Alves, Pc., and Manhães-de-Castro, R. (2008). Neonatal administration of fluoxetine decreased final Sertoli cell number in Wistar rats. Int. J. Morphol. 26, 51–62.

Da Silva, C. M., Gonçalves, L., Manhaes-de-Castro, R., and Nogueira, M. I. (2010). Postnatal fluoxetine treatment affects the development of serotonergic neurons in rats. Neurosci. Lett. 483, 179–183.
Postnatal fluoxetine treatment affects the development of serotonergic neurons in rats.Crossref | GoogleScholarGoogle Scholar |

de Oliveira, W. M., de Sá, I. R., de Torres, S. M., de Morais, R. N., Andrade, A. M., Maia, F. C. L., Tenorio, B. M., and Da Silva Junior, V. A. (2013). Perinatal exposure to fluoxetine via placenta and lactation inhibits the testicular development in male rat offspring. Syst. Biol. Reprod. Med. 59, 244–250.
Perinatal exposure to fluoxetine via placenta and lactation inhibits the testicular development in male rat offspring.Crossref | GoogleScholarGoogle Scholar |

Deiró, T. C. B. J., Manhães-de-Castro, R., Cabral-Filho, J. E., Souza, S. L., Freitas-Silva, S. R., Ferreira, L. M. P., Guedes, R. C. A., Câmara, C. R. V., and Barros, K. M. F. T. (2004). Neonatal administration of citalopram delays somatic maturation in rats. Braz. J. Med. Biol. Res. 37, 1503–1509.

Eacker, S. M., Agrawal, N., Qian, K., Dichek, H. L., Gong, E.-Y., Lee, K., and Braun, R. E. (2008). Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol. Endocrinol. 22, 623–635.
Hormonal regulation of testicular steroid and cholesterol homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis12ns7w%3D&md5=81551b3d23790ebc19ab5c8d36f4736fCAS |

Emslie, G. J., Heiligenstein, J. H., Wagner, K. D., Hoog, S. L., Ernest, D. E., Brown, E., Nilsson, M., and Jacobson, J. G. (2002). Fluoxetine for acute treatment of depression in children and adolescents: a placebo-controlled, randomized clinical trial. J. Am. Acad. Child Adolesc. Psychiatry 41, 1205–1215.
Fluoxetine for acute treatment of depression in children and adolescents: a placebo-controlled, randomized clinical trial.Crossref | GoogleScholarGoogle Scholar |

Erdemir, F., Atilgan, D., Firat, F., Markoc, F., Parlaktas, B. S., and Sogut, E. (2014). The effect of sertraline, paroxetine, fluoxetine and escitalopram on testicular tissue and oxidative stress parameters in rats. Int. Braz. J. Urol. 40, 100–108.
The effect of sertraline, paroxetine, fluoxetine and escitalopram on testicular tissue and oxidative stress parameters in rats.Crossref | GoogleScholarGoogle Scholar |

Ferjan, I., and Erjavec, F. (1996). Changes in histamine and serotonin secretion from rat peritoneal mast cells caused by antidepressants. Inflamm. Res. 45, 141–144.
| 1:CAS:528:DyaK28XitlWis74%3D&md5=2c456f0093e7937311d92e027b5fa3b7CAS |

Fox, J., and Weisberg, S. (2011). ‘An R Companion to Applied Regression.’ (Sage: Thousand Oaks, CA.)

Frazer, A., and Hensler, J. G. (1994). Serotonin. In ‘Basic Neurochemistry’. (Eds G. Siegel, B. Agranoff, R. Alvers, and P. Molinoff.) pp. 238–319. (Raven Press: New York, NY.)

Freedman, N. J., and Lefkowitz, R. J. (1996). Desensitization of G protein-coupled receptors. Recent Prog. Horm. Res. 51, 319–351.
| 1:CAS:528:DyaK2sXktFKisrc%3D&md5=54d272dcb9e6abf47c01cd159106c527CAS |

Frungieri, M. B., Gonzalez-Calvar, S. I., Rubio, M., Ozu, M., Lustig, L., and Calandra, R. S. (1999). Serotonin in golden hamster testes: testicular levels, immunolocalization and role during sexual development and photoperiodic regression-recrudescence transition. Neuroendocrinology 69, 299–308.
Serotonin in golden hamster testes: testicular levels, immunolocalization and role during sexual development and photoperiodic regression-recrudescence transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislOku7w%3D&md5=2ad2c9a4a36cdb9a68cc88949b1df289CAS |

Fuller, R. W., Wong, D. T., and Robertson, D. W. (1991). Fluoxetine, a selective inhibitor of serotonin uptake. Med. Res. Rev. 11, 17–34.
Fluoxetine, a selective inhibitor of serotonin uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXpsVCqtA%3D%3D&md5=6c02fed751e44026bd0b4f6485ada896CAS |

Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br. J. Pharmacol. 151, 737–748.
Tricyclic antidepressant pharmacology and therapeutic drug interactions updated.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1ylsbc%3D&md5=8d8f8ca4bf1aafbcbc9ebeaafe2b73a4CAS |

Gouveia, E. M., and Franci, C. R. (2004). Involvement of serotonin 5HT1 and 5HT2 receptors and nitric oxide synthase in the medial preoptic area on gonadotropin secretion. Brain Res. Bull. 63, 243–251.
Involvement of serotonin 5HT1 and 5HT2 receptors and nitric oxide synthase in the medial preoptic area on gonadotropin secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCrsbY%3D&md5=e4c99c0960cd8ea54a2d7e7d6bebce04CAS |

Green, A. R., Mechan, A. O., Elliott, J. M., O’Shea, E., and Colado, M. I. (2003). The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’). Pharmacol. Rev. 55, 463–508.
The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVynurs%3D&md5=bd8b1fbf6fc5f5b2187a9bbb36dd8325CAS |

Hansen, C. H., Larsen, L. W., Sørensen, A. M., Halling-Sørensen, B., and Styrishave, B. (2017). The six most widely used selective serotonin reuptake inhibitors decrease androgens and increase estrogens in the H295R cell line. Toxicol. In Vitro 41, 1–11.
The six most widely used selective serotonin reuptake inhibitors decrease androgens and increase estrogens in the H295R cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjtlKju7s%3D&md5=802f9d90a4a2ba3fe5b40356a0f26f81CAS |

Heffner, T. G., Hartman, J. A., and Seiden, L. S. (1980). A rapid method for the regional dissection of the rat brain. Pharmacol. Biochem. Behav. 13, 453–456.
A rapid method for the regional dissection of the rat brain.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M%2Fjt1Kgsg%3D%3D&md5=e61eebd669e56dada8d5ba0b94f7da4bCAS |

Hiemke, C., and Härtter, S. (2000). Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol. Ther. 85, 11–28.
Pharmacokinetics of selective serotonin reuptake inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFeltLo%3D&md5=b4a067db9870e0536886630449904267CAS |

Justo, S. N., Rossano, G. L., Szwarcfarb, B., Rubio, M. C., and Moguilevsky, J. A. (1989). Effect of serotoninergic system on FSH secretion in male and female rats: evidence for stimulatory and inhibitory actions. Neuroendocrinology 50, 382–386.
Effect of serotoninergic system on FSH secretion in male and female rats: evidence for stimulatory and inhibitory actions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtV2mtb0%3D&md5=b06f47fd17379956ca9a1a789fa91d1fCAS |

Kampstra, P. (2008). Beanplot: a boxplot alternative for visual comparison of distributions. J. Stat. Softw. 28, 1–9.
Beanplot: a boxplot alternative for visual comparison of distributions.Crossref | GoogleScholarGoogle Scholar |

Klimek, V., Zak-Knapik, J., and Mackowiak, M. (1994). Effects of repeated treatment with fluoxetine and citalopram, 5-HT uptake inhibitors, on 5-HT1A and 5-HT2 receptors in the rat brain. J. Psychiatry Neurosci. 19, 63–67.
| 1:STN:280:DyaK2c7pvVartg%3D%3D&md5=5b832837e5c92771d90e80047f052f11CAS |

Klomp, A., Tremoleda, J. L., Wylezinska, M., Nederveen, A. J., Feenstra, M., Gsell, W., and Reneman, L. (2012). Lasting effects of chronic fluoxetine treatment on the late developing rat brain: age-dependent changes in the serotonergic neurotransmitter system assessed by pharmacological MRI. Neuroimage 59, 218–226.
Lasting effects of chronic fluoxetine treatment on the late developing rat brain: age-dependent changes in the serotonergic neurotransmitter system assessed by pharmacological MRI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlChtrvM&md5=94fa389c14538fb45e8768e4806ddcffCAS |

Kolcsár, M., Gáll, Z., Bíró, I., Bába, L., Imre, A., Dogaru, M., and Mártha, O. (2016). Fluoxetine influence on body weight, serum adiponectin levels and adipose tissue triglycerides levels in rats. Farmacia 64, 599–604.

Kovács, A., Hársing, L. G., and Szénási, G. (2012). Vasoconstrictor 5-HT receptors in the smooth muscle of the rat middle cerebral artery. Eur. J. Pharmacol. 689, 160–164.
Vasoconstrictor 5-HT receptors in the smooth muscle of the rat middle cerebral artery.Crossref | GoogleScholarGoogle Scholar |

Krsmanovic, L. Z., Hu, L., Leung, P.-K., Feng, H., and Catt, K. J. (2010). Pulsatile GnRH secretion: roles of G protein-coupled receptors, second messengers and ion channels. Mol. Cell. Endocrinol. 314, 158–163.
Pulsatile GnRH secretion: roles of G protein-coupled receptors, second messengers and ion channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFynurjI&md5=ec8cfde72e7d9c68393f5666570048d0CAS |

Lauzurica, N., García-García, L., Fuentes, J. A., and Delgado, M. (2013). Hypophagia and induction of serotonin transporter gene expression in raphe nuclei of male and female rats after short-term fluoxetine treatment. J. Physiol. Biochem. 69, 69–74.
Hypophagia and induction of serotonin transporter gene expression in raphe nuclei of male and female rats after short-term fluoxetine treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVaitrk%3D&md5=c8b166642f9891063f2358e7c05d9188CAS |

Licht, C. L., Marcussen, A. B., Wegener, G., Overstreet, D. H., Aznar, S., and Knudsen, G. M. (2009). The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration. J. Neurochem. 109, 1363–1374.
The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVCisrg%3D&md5=2c4c853313038cb7075891a53fb5230eCAS |

Linder, R. E., Strader, L. F., Slott, V. L., and Suarez, J. D. (1992). Endpoints of spermatotoxicity in the rat after short duration exposures to fourteen reproductive toxicants. Reprod. Toxicol. 6, 491–505.
Endpoints of spermatotoxicity in the rat after short duration exposures to fourteen reproductive toxicants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpsFynsw%3D%3D&md5=0c39605a49c3cf6f98a65579a1e1efecCAS |

Maciag, D., Simpson, K. L., Coppinger, D., Lu, Y., Wang, Y., Lin, R. C. S., and Paul, I. A. (2006). Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology 31, 47–57.
Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWjsr3K&md5=f5196232e82da83ff7ec953604bcede2CAS |

Mandrioli, R., Forti, G. C., and Raggi, M. A. (2006). Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450. Curr. Drug Metab. 7, 127–133.
Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Oms74%3D&md5=a19f53a2ead479fc3b0a320330f29053CAS |

Masu, K., Saino, T., Kuroda, T., Matsuura, M., Russa, A. D., Ishikita, N., and Satoh, Y. (2008). Regional differences in 5-HT receptors in cerebral and testicular arterioles of the rat as revealed by Ca2+ imaging of real-time confocal microscopy: variances by artery size and organ specificity. Arch. Histol. Cytol. 71, 291–302.
Regional differences in 5-HT receptors in cerebral and testicular arterioles of the rat as revealed by Ca2+ imaging of real-time confocal microscopy: variances by artery size and organ specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Ohtbc%3D&md5=7e4fc5f959c3796533126f55e9ee7a42CAS |

Matthiesson, K. L., McLachlan, R. I., O’Donnell, L., Frydenberg, M., Robertson, D. M., Stanton, P. G., and Meachem, S. J. (2006). The relative roles of follicle-stimulating hormone and luteinizing hormone in maintaining spermatogonial maturation and spermiation in normal men. J. Clin. Endocrinol. Metab. 91, 3962–3969.
The relative roles of follicle-stimulating hormone and luteinizing hormone in maintaining spermatogonial maturation and spermiation in normal men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSjtbzI&md5=2d3c4c1d20867f39f2b8c402e4f19db8CAS |

Méndez Palacios, N., Ayala, E. M. E., Mendoza, M., Huerta, C., Guerrero, A., Melández, J., and Aragón, M. A. (2016). Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion. Reprod. Fertil. Dev. 28, 806–814.
Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion.Crossref | GoogleScholarGoogle Scholar |

Moguilevsky, J. A., and Wuttke, W. (2001). Changes in the control of gonadotrophin secretion by neurotransmitters during sexual development in rats. Exp. Clin. Endocrinol. Diabetes 109, 188–195.
Changes in the control of gonadotrophin secretion by neurotransmitters during sexual development in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFCnurs%3D&md5=853f0e5e9d1ba70e19fc25ad7862d6dfCAS |

Monteiro Filho, W. O., de Torres, S. M., Amorim, M. J. A. A. L., Andrade, A. J. M., de Morais, R. N., Tenorio, B. M., and Da Silva Junior, V. A. (2014). Fluoxetine induces changes in the testicle and testosterone in adult male rats exposed via placenta and lactation. Syst Biol Reprod Med 60, 274–281.
Fluoxetine induces changes in the testicle and testosterone in adult male rats exposed via placenta and lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslWiur7P&md5=898b1d9e520196b3661fe6f681c772c0CAS |

Murray, M. L., Wong, I. C. K., and de Vries, C. S. (2004). Treating major depression in children and adolescents: research is needed into safer and more effective drugs. BMJ 328, 524–525.

O’Shaughnessy, P. J. (2014). Hormonal control of germ cell development and spermatogenesis. Semin. Cell Dev. Biol. 29, 55–65.
Hormonal control of germ cell development and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFWms7g%3D&md5=f4741410266dcd8a0d4919486d1436f5CAS |

Ojeda, S. R., and Skinner, M. K. (2006). Puberty in the rat. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill.) pp. 2061–2126. (Elsevier: New York, NY.)

Paradisi, R., Natali, F., Fabbri, R., Battaglia, C., Seracchioli, R., and Venturoli, S. (2014). Evidence for a stimulatory role of high doses of recombinant human follicle-stimulating hormone in the treatment of male-factor infertility. Andrologia 46, 1067–1072.
Evidence for a stimulatory role of high doses of recombinant human follicle-stimulating hormone in the treatment of male-factor infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGjsr3E&md5=9bd01e48537cbe857e1b90459b87bfe0CAS |

Paxinos, G., and Watson, C. (2007). ‘The Rat Brain in Stereotaxic Coordinates.’ (Academic Press: New York, NY.)

Pichardo, A. I., Aragón-Martínez, A., Ayala-Escobar, M. E., and Vara, A. I. (2010). Viability tests, active caspase-3 and -7, and chromatin structure in ram sperm selected using the swim-up procedure. J. Androl. 31, 169–176.
Viability tests, active caspase-3 and -7, and chromatin structure in ram sperm selected using the swim-up procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1ShtLY%3D&md5=f32d62ab45078c908982fe3e5b8c5a3eCAS |

Pinilla, L., Tena-Sempere, M., and Aguilar, E. (1997). Role of serotoninergic receptors in gonadotropin secretion in male rats. J. Endocrinol. Invest. 20, 410–416.
Role of serotoninergic receptors in gonadotropin secretion in male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVamt7c%3D&md5=a18bdec0c945d8bea449a05589fcb02eCAS |

Pinilla, L., Gonzalez, L. C., Tena-Sempere, M., and Aguilar, E. (2003). 5-HT1 and 5-HT2 receptor activation reduces N-methyl-d-aspartate (NMDA)-stimulated LH secretion in prepubertal male and female rats. Eur. J. Endocrinol. 148, 121–127.
5-HT1 and 5-HT2 receptor activation reduces N-methyl-d-aspartate (NMDA)-stimulated LH secretion in prepubertal male and female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVKlsg%3D%3D&md5=dd8137cee638d2fab755a6a16c2d2484CAS |

Pitynski, D., Flynn, F. W., and Skinner, D. C. (2015). Does salt have a permissive role in the induction of puberty? Med. Hypotheses 85, 463–467.
Does salt have a permissive role in the induction of puberty?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFeiu7fL&md5=07b4e5d7ce9b8d36fefbdf17af13418fCAS |

Qu, Y., Aluisio, L., Lord, B., Boggs, J., Hoey, K., Mazur, C., and Lovenberg, T. (2009). Pharmacokinetics and pharmacodynamics of norfluoxetine in rats: increasing extracellular serotonin level in the frontal cortex. Pharmacol. Biochem. Behav. 92, 469–473.
Pharmacokinetics and pharmacodynamics of norfluoxetine in rats: increasing extracellular serotonin level in the frontal cortex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFWrsbk%3D&md5=666945fa01a62b7626a6f3fb45303c9bCAS |

Raap, D. K., Garcia, F., Muma, N. A., Wolf, W. A., Battaglia, G., and van de Kar, L. D. (1999a). Sustained desensitization of hypothalamic 5-hydroxytryptamine1A receptors after discontinuation of fluoxetine: inhibited neuroendocrine responses to 8-hydroxy-2-(dipropylamino)tetralin in the absence of changes in Gi/o/z proteins. J. Pharmacol. Exp. Ther. 288, 561–567.
| 1:CAS:528:DyaK1MXpvFOgsg%3D%3D&md5=b937180a417a80ba6c1bdb55d5126420CAS |

Raap, D. K., Evans, S., Garcia, F., Li, Q., Muma, N. A., Wolf, W. A., Battaglia, G., and Van De Kar, L. D. (1999b). Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT1A receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of Gz and Gi proteins. J. Pharmacol. Exp. Ther. 288, 98–106.
| 1:CAS:528:DyaK1MXisVyksA%3D%3D&md5=e64cf11ee44c7f440bfea18a184e4edaCAS |

Ramón, M., Jiménez-Rabadán, P., García-Álvarez, O., Maroto-Morales, A., Soler, A. J., Fernández-Santos, M. R., Pérez-Guzmán, M. D., and Garde, J. J. (2014). Understanding sperm heterogeneity: biological and practical implications. Reprod. Domest. Anim. 49, 30–36.
Understanding sperm heterogeneity: biological and practical implications.Crossref | GoogleScholarGoogle Scholar |

Rausch, J. L., Johnson, M. E., Li, J., Hutcheson, J., Carr, B. M., Corley, K. M., Gowans, A. B., and Smith, J. (2005). Serotonin transport kinetics correlated between human platelets and brain synaptosomes. Psychopharmacology (Berl.) 180, 391–398.
Serotonin transport kinetics correlated between human platelets and brain synaptosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1WmtLo%3D&md5=7356bf26a4eb605a85a7ae6c5edcba70CAS |

Seed, J., Chapin, R. E., Clegg, E. D., Dostal, L. A., Foote, R. H., Hurtt, M. E., Klinefelter, G. R., Makris, S. L., Perreault, S. D., Schrader, S., Seyler, D., Sprando, R., Treinen, K. A., Veeramachaneni, D. N., and Wise, L. D. (1996). Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report. ILSI Risk Science Institute Expert Working Group on Sperm Evaluation. Reprod. Toxicol. 10, 237–244.
Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report. ILSI Risk Science Institute Expert Working Group on Sperm Evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslSqtL0%3D&md5=9de6f8178aa1e76944e79ca928a839b8CAS |

Shishkina, G. T., and Dygalo, N. N. (2000). Role of the serotoninergic system in the acceleration of sexual maturation in wild Norway rats selected for reduced aggressiveness toward humans. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 125, 45–51.
| 1:STN:280:DC%2BD38%2FmtlWnuw%3D%3D&md5=eff1c6e05b94fa0d2b8ab079d0736c26CAS |

Tinajero, J. C., Fabbri, A., Ciocca, D. R., and Dufau, M. L. (1993). Serotonin secretion from rat Leydig cells. Endocrinology 133, 3026–3029.
Serotonin secretion from rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1CltA%3D%3D&md5=72cfc41c620e7d2c01565100c292062bCAS |

Vetter-O’Hagen, C. S., and Spear, L. P. (2012). Hormonal and physical markers of puberty and their relationship to adolescent-typical novelty-directed behavior. Dev. Psychobiol. 54, 523–535.
Hormonal and physical markers of puberty and their relationship to adolescent-typical novelty-directed behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOhtb8%3D&md5=be6e9bdc8a8e3fbf36e992a55d2883b5CAS |

Vidal, R., Valdizán, E. M., Mostany, R., Pazos, A., and Castro, E. (2009). Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain. J. Neurochem. 110, 1120–1127.
Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlensbo%3D&md5=28e4b199cfd5fa5de35f71b0adbd5806CAS |

Vieira, M. L., Hamada, R. Y., Gonzaga, N. I., Bacchi, A. D., Barbieri, M., Moreira, E. G., Mesquita, S. de F.P., and Gerardin, D. C. C. (2013). Could maternal exposure to the antidepressants fluoxetine and St. John’s Wort induce long-term reproductive effects on male rats? Reprod. Toxicol. 35, 102–107.
Could maternal exposure to the antidepressants fluoxetine and St. John’s Wort induce long-term reproductive effects on male rats?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGisbrO&md5=5dd52205c386551a05db435e6e6e9084CAS |

Wada, K., Hu, L., Mores, N., Navarro, C. E., Fuda, H., Krsmanovic, L. Z., and Catt, K. J. (2006). Serotonin (5-HT) receptor subtypes mediate specific modes of 5-HT-induced signaling and regulation of neurosecretion in gonadotropin-releasing hormone neurons. Mol. Endocrinol. 20, 125–135.
Serotonin (5-HT) receptor subtypes mediate specific modes of 5-HT-induced signaling and regulation of neurosecretion in gonadotropin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsleltg%3D%3D&md5=e666484fbf73d543ae221c42712a3667CAS |

Wegerer, V., Moll, G. H., Bagli, M., Rothenberger, A., Rüther, E., and Huether, G. (1999). Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life. J. Child Adolesc. Psychopharmacol. 9, 13–24.
Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3osVCjtA%3D%3D&md5=1335fc77f1ac4f0093d936aa0afb74c9CAS |

Wickham, H. (2009). ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer-Verlag: New York, NY.)

Wong, D. T., Reid, L. R., and Threlkeld, P. G. (1988). Suppression of food intake in rats by fluoxetine: comparison of enantiomers and effects of serotonin antagonists. Pharmacol. Biochem. Behav. 31, 475–479.
Suppression of food intake in rats by fluoxetine: comparison of enantiomers and effects of serotonin antagonists.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1ynurY%3D&md5=3b9926bd72c370a25c3d4c2025050a79CAS |

Yamauchi, M., Miyara, T., Matsushima, T., and Imanishi, T. (2006). Desensitization of 5-HT2A receptor function by chronic administration of selective serotonin reuptake inhibitors. Brain Res. 1067, 164–169.
Desensitization of 5-HT2A receptor function by chronic administration of selective serotonin reuptake inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1WgtA%3D%3D&md5=0d6a8b33e8dbd9dc992a246632267592CAS |