235

PAF INDUCED CHANGES IN INTRACELLULAR CA²⁺ AND MEMBRANE POTENTIAL IN THE 2-CELL MOUSE EMBRYO

<u>Y. Li</u>^{1,2}, M. L. Day², C. O'Neill^{1,2}

¹Human Reproduction Unit, Royal North Shore Hospital, University of Sydney, NSW, Australia; ²Physiology, University of Sydney, NSW, Australia

Platelet-activating factor (PAF) is an autocrine survival factor for the preimplantation embryo. PAF induces a transient increase in intracellular Ca^{2+} ($[Ca^{2+}]_i$) in 2-cell embryos that is caused by the interdependent influx of external calcium and release of calcium from internal stores. A membrane current with L-type calcium channel properties is activated during PAF-induced calcium signalling. Since the L-type channel in many cell types is primarily voltage-gated we were interested to learn whether this was also the case in the 2-cell embryo. The present study investigated the relationship between the PAF-induced Ca^{2+} transient and changes in membrane potential (E_m) in the 2-cell embryo.

The perforated whole-cell patch-clamp technique was used to detect changes in Em and standard calcium imaging techniques were used to measure changes in $[Ca^{2+}]_i$ in 2-cell embryos from QS mice. Embryos were first loaded with Fluo-3 and then pretreated with PAF:acetylhydrolase to degrade the embryo derived PAF before patch clamping. Whole-cell perforated patch-clamping was performed by inclusion of 240mg/ml Nystatin in the pipette solution. Changes in E_m and $[Ca^{2+}]_i$ were recorded simultaneously after treatment of the embryo with PAF.

In 2-cell embryos PAF induced a change in E_m , consisting of an initial small depolarisation of $2.4 \pm 0.2 \text{ mV}$ ($42 \pm 4 \text{ sec}$ after addition of PAF) followed by one or more transient hyperpolarisations of $-8 \pm 1 \text{ mV}$ ($100 \pm 9 \text{ sec}$ after addition of PAF). Transient increases in $[Ca^{2+}]_i$ paralleled the membrane hyperpolaristions and were initiated at 84 ± 8 sec after addition of PAF. These responses to PAF were seen in 58% of 2-cell embryos (n = 52). It is not yet clear whether these changes in E_m account for the activation of calcium influx through the L-type channel. The results show for the first time that the 2-cell embryo is an electrically active organism.

10.1071/SRB04Ab235