INFERTILITY IN MICE WITH NULL MUTATION OF THE EGR-1 TRANSCRIPTION FACTOR

D. L. Russell

Obstetrics and Gynaecology, The University of Adelaide, Adelaide, SA, Australia

Female infertility has been reported in two lines of mice with mutation of the *Egr-1* gene. One underlying cause of this defect is deficient LH production by pituitary gonadotropes. However, Egr-1 is also acutely regulated by both FSH and LH in ovarian granulosa cells (1). A role for this transcription factor in regulating gonadotrophin responsive target genes and ovarian function is hypothesised. Indeed the LH-receptor is a proposed target of Egr-1 regulation, but this has not been investigated in detail *in vivo* and is difficult to reconcile with the pattern of Egr-1 expression.

In this study, the role of Egr-1 within the ovarian follicle was investigated using exogenous gonadotropin replacement in $Egr-I^{-/-}$ mice. Adult $Egr-I^{-/-}$ female mice superovulated by sequential PMSG and hCG stimulation and mated with proven male breeders failed to produced offspring while 90% of heterozygous females got pregnant and produced litters (7.4 \pm 2.9 pups per litter) within 22 days of stimulation. Recovery of oocytes from oviducts of immature superovulated mice revealed a reduced ovulation rate in null females (6.3 \pm 3.8 oocytes) compared to their heterozygous (18.0 \pm 6.5) and WT (17.8 \pm 6.8) littermates. Gross morphology and histology of exogenously stimulated ovaries were indistinguishable from their heterozygous or WT counterparts. Surprisingly, no alteration was detectable in the mRNA expression of previously reported direct Egr-1 responsive genes, namely LH-receptor and membrane prostaglandin E synthase (mPGES). Nor were mRNA for two critical ovulatory genes with putative Egr-1 response elements, ADAMTS-1 or versican V1 altered. Temporal and spatial expression of genes involved in ovarian steroidogenesis, P450scc and Cyp17 and LH-receptor, were indistinguishable from normal littermates during exogenously controled follicular development.

Combined observations of acute Egr-1 induction by gonadotropins, reduced ovulation and complete infertility suggest an important role for Egr-1 in ovarian function. However, genes identified as targets of Egr-1 regulation in other studies proved to be Egr-1 independent in this model.

(1) Russell et al. (2003) Mol. Endo. 17, 520.

10.1071/SRB04Ab279