Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Trolox equivalent antioxidant capacities and fatty acids profile of 18 alpine plants available as forage for yaks on the Qinghai-Tibetan Plateau

Guangxin Cui A , A. Allan Degen B F , Xiaoxing Wei C , Jianwei Zhou D , Luming Ding D , Zhanhuan Shang D , Xiaohong Wei E and Ruijun Long D
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Grassland and Agro-Ecosystem, College of Pastoral Agriculture Science and Technology, International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, PR China.

B Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva 84105, Israel.

C Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau Xining, 810016 PR China.

D State Key Laboratory of Grassland and Agro-Ecosystem, School of Life Sciences, International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou 730000, PR China.

E School of Life Sciences and Technology, Gansu Agriculture University, Lanzhou 730070, PR China.

F Corresponding author. Email: degen@bgu.ac.il

The Rangeland Journal 38(4) 373-380 https://doi.org/10.1071/RJ16012
Submitted: 7 February 2016  Accepted: 21 April 2016   Published: 6 June 2016

Abstract

Traditionally, yaks (Poephagus grunniens) raised on the Qinghai-Tibetan plateau graze only natural pasture and much of their diet consists of sedges, in particular Kobresia spp. These ruminants are subjected to an extremely harsh environment of strong UV radiation, hypoxia and severe cold, which can lead to high oxidative stress. Consequently, it was predicted that sedges would contain high concentrations of functional antioxidants when compared with other alpine plants, and that this would help them survive the harsh conditions. To test the prediction, 18 alpine plants on the Qinghai-Tibetan plateau, which are available to yaks as forage, were examined. These plants, including four sedges, five grasses, five forbs and four shrubs, were analysed for gross constituents, Trolox equivalent antioxidant capacity, phenol content, and fatty acids composition. Based on their Trolox equivalent antioxidant capacity, the 18 plants were divided into three groups: low, medium and high. Three of the four sedges were ranked in the medium group and one in the low group, whereas three of four shrubs were ranked in the high group. The total phenol content of the plants ranged between 1.1 and 12.4 g gallic acid equivalents per 100 g DM, with the shrubs containing the highest concentrations. The prediction that sedges would contain higher antioxidant capacity than other alpine plants was not supported. It was concluded that other factors such as anti-nutritional contents and biomass availability are also important in determining dietary selection in yaks.

Additional keywords: altitude, extreme environment phenols, oxidative stress, tannins.


References

Alothman, M., Bhat, R., and Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry 115, 785–788.
Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVeiu7g%3D&md5=966b0160bf3475d0358fe4cca60f22b2CAS |

Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., and Weil, J. A. (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry 84, 551–562.
Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOltro%3D&md5=a0652289f92c70d0c52576d5a988ac46CAS |

AOAC (2002). ‘Official Methods of Analysis.’ 17th edn. (Association of Official Analytical Chemists: Gaithersburg, MD.)

Askew, E. W. (2002). Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 180, 107–119.
Work at high altitude and oxidative stress: antioxidant nutrients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1Gjtbk%3D&md5=d02a88bfe352acc1daa9a8aaa2c97c74CAS | 12324188PubMed |

Bao, S. K., Ran, F., Li, H. P., Han, F., and Li, Y. K. (2008). Comparison of antioxidative system in Microula sikkimensis at different altitudes. Xibei Zhiwu Xuebao 28, 1787–1793.
| 1:CAS:528:DC%2BD1MXhtVamsbzJ&md5=59f20b49fdc473cbf7657eacfb111770CAS |

Barry, T. N. (1989). Condensed tannins: their role in ruminant’s protein and carbohydrate digestion and possible effects upon the rumen ecosystem. In: ‘The Roles of Protozoa and Fungi in Ruminants Digestion’. (Eds J. V. Nolan, R. A. Leng and D. I. Demeyer.) pp. 153–169. (Penambul Books: Armidale, NSW.)

Behn, C., Araneda, O. F., Llanos, A. J., Celedón, G., and González, G. (2007). Hypoxia-related lipid peroxidation: Evidences, implications and approaches. Respiratory Physiology & Neurobiology 158, 143–150.
Hypoxia-related lipid peroxidation: Evidences, implications and approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOis7vO&md5=4d7faa3a7b87387abdc83630f5516897CAS |

Bovolenta, S., Spanghero, M., Dovier, S., Orlandi, D., and Clementel, F. (2008). Chemical composition and net energy content of alpine pasture species during the grazing season. Animal Feed Science and Technology 146, 178–191.
Chemical composition and net energy content of alpine pasture species during the grazing season.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOitb%2FL&md5=5583829c485586fbde441b322de763a6CAS |

Cincotta, R. P., van Soest, P. J., Robertson, J. B., Beall, C. M., and Goldstein, M. C. (1991). Forage ecology of livestock on the Tibetan Changtan: a comparison of three adjacent grazing areas. Arctic and Alpine Research 23, 149–161.
Forage ecology of livestock on the Tibetan Changtan: a comparison of three adjacent grazing areas.Crossref | GoogleScholarGoogle Scholar |

Cui, G. X., Yuan, F., Degen, A. A., Liu, S. M., Zhou, J. W., Shang, Z. H., Ding, L. M., Mi, J. D., Wei, X. H., and Long, R. J. (2016). Composition of the milk of yaks raised at different altitudes on the Qinghai-Tibetan Plateau. International Dairy Journal 59, 29–35.
Composition of the milk of yaks raised at different altitudes on the Qinghai-Tibetan Plateau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksFKjsrg%3D&md5=5fcbcaa686203b4ada47a10017e6b07cCAS |

Degen, A. A., Benjamin, R. W., Abdraimov, S. A., and Sarbasov, T. I. (2002). Browse selection by Karakul desert sheep in relation to plant composition and estimated metabolizable energy content. Journal of Agricultural Science, Cambridge 139, 353–358.
Browse selection by Karakul desert sheep in relation to plant composition and estimated metabolizable energy content.Crossref | GoogleScholarGoogle Scholar |

Degen, A. A., El-Meccawi, S., and Kam, M. (2010). Cafeteria trials to determine relative preference of six desert trees and shrubs by sheep and goats. Livestock Science 132, 19–25.
Cafeteria trials to determine relative preference of six desert trees and shrubs by sheep and goats.Crossref | GoogleScholarGoogle Scholar |

Dosek, A., Ohno, H., Acs, Z., Taylor, A. W., and Radak, Z. (2007). High altitude and oxidative stress. Respiratory Physiology & Neurobiology 158, 128–131.
High altitude and oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOis7vM&md5=cce744ecb985fdbf847b4913d2e0219dCAS |

Dreher, D., and Junod, A. F. (1996). Role of oxygen free radicals in cancer development. European Journal of Cancer 32A, 30–38.
Role of oxygen free radicals in cancer development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlKqsbo%3D&md5=44d5dc6e9f029384d727c25be792e7bdCAS | 8695238PubMed |

Dreiucker, J., and Vetter, W. (2011). Fatty acids patterns in camel, moose, cow and human milk as determined with GC/MS after silver ion solid phase extraction. Food Chemistry 126, 762–771.
Fatty acids patterns in camel, moose, cow and human milk as determined with GC/MS after silver ion solid phase extraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrurfM&md5=036e3dadc90b4597a5a5e4acd5b7a972CAS |

Fernández-Pachόn, M. S., Vallaño, D., García-Parrilla, M. C., and Troncoso, A. M. (2004). Antioxidant activity of wines and relation with their polyphenolic composition. Analytica Chimica Acta 513, 113–118.
Antioxidant activity of wines and relation with their polyphenolic composition.Crossref | GoogleScholarGoogle Scholar |

Finkel, T. (1998). Oxygen radicals and signaling. Current Opinion in Cell Biology 10, 248–253.
Oxygen radicals and signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFyntLY%3D&md5=5a86c127d8f0875326ce5921d63af77eCAS | 9561849PubMed |

Fuller, H. R., Humphrey, E. L., and Morris, G. E. (2013). Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases. Future Medicinal Chemistry 5, 2091–2101.
Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrsb%2FM&md5=de004156fe1bf657c18eb90617852276CAS | 24215348PubMed |

Ghiselli, A., Serafini, M., Natella, F., and Scaccini, C. (2000). Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology & Medicine 29, 1106–1114.
Total antioxidant capacity as a tool to assess redox status: critical view and experimental data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1yhuro%3D&md5=9c9c67b13e541da2d2fb4b04d496f5f1CAS |

Glasser, F., Doreau, M., Maxin, G., and Baumont, R. (2013). Fat and fatty acid content and composition of forages: A meta-analysis. Animal Feed Science and Technology 185, 19–34.
Fat and fatty acid content and composition of forages: A meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2iu7zI&md5=a64a3cef92a254274355d4407ebc87afCAS |

Godin, D. V., and Wohaieb, S. A. (1988). Nutritional deficiency, starvation, and tissue antioxidant status. Free Radical Biology & Medicine 5, 165–176.
Nutritional deficiency, starvation, and tissue antioxidant status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls12hsbs%3D&md5=f2e3424e4298f8b91b58a851aa89f57aCAS |

Gu, J. F., Du, S. F., and Guo, C. J. (2012). Nutrition and prevention and treatment of free radical damage. In: ‘Modern Clinical Nutrition’. 2nd edn. (Eds J. F. Gu, S. F. Du and C. J. Guo.) pp. 343–359. (Science Publishers: Beijing, China.)

Guo, X. S., Ding, L. M., Long, R. J., Qi, B., Shang, Z. H., Wang, Y. P., and Cheng, X. Y. (2012). Changes of chemical composition to high altitude results in Kobresia littledalei growing in alpine meadows with high feeding values for herbivores. Animal Feed Science and Technology 173, 186–193.
Changes of chemical composition to high altitude results in Kobresia littledalei growing in alpine meadows with high feeding values for herbivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktlOjtrk%3D&md5=a66e42c0b0728dd1ffbd25c3a02c8e20CAS |

Halliwell, B. (1994). Free radicals, antioxidants and human disease: curiosity, cause, or consequence? Lancet 344, 721–724.
Free radicals, antioxidants and human disease: curiosity, cause, or consequence?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFamurg%3D&md5=bed6bdf01dee2a18bc5e0b8772654fcdCAS | 7915779PubMed |

Halliwell, B., Gutteridge, J., and Cross, C. (1992). Free radicals, antioxidants and human disease: How are we now? The Journal of Laboratory and Clinical Medicine 119, 598–620.
| 1:CAS:528:DyaK38Xlt1yqt74%3D&md5=a39d6f77a6b1987873e94716d3ec30e8CAS | 1593209PubMed |

Han, X. T., Xie, A. Y., Bi, X. C., Liu, S. J., and Hu, L. H. (2002). Effects of high altitude and season on fasting heat production in the yak Bos grunniens or Poephagus grunniens. British Journal of Nutrition 88, 189–197.
Effects of high altitude and season on fasting heat production in the yak Bos grunniens or Poephagus grunniens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1Cjsb8%3D&md5=9a9339e871081976c2a6e6b8f1268864CAS | 12144722PubMed |

Hancock, J., Desikan, R., and Neill, S. (2001). Role of reactive oxygen species in cell signaling pathways. Biochemical Society Transactions 29, 345–350.
| 1:CAS:528:DC%2BD3MXkslemsro%3D&md5=186bca18c024f0f56531b52ade5808aeCAS | 11356180PubMed |

Harman, D. (1978). Free radical theory of aging: nutritional implications. Age 1, 145–152.
Free radical theory of aging: nutritional implications.Crossref | GoogleScholarGoogle Scholar |

Hauswirth, C. B., Scheeder, M. R. L., and Beer, J. H. (2004). High omega-3 fatty acids content in alpine cheese - the basis for an alpine paradox. Circulation 109, 103–107.
High omega-3 fatty acids content in alpine cheese - the basis for an alpine paradox.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWjtrjI&md5=7221c83725d5ba7176f1da5e2f1debd8CAS | 14676141PubMed |

Hügel, H. M., and Jackson, N. (2012). Redox chemistry of green tea polyphenols therapeutic benefits in neurodegenerative diseases. Mini-Reviews in Medicinal Chemistry 12, 380–387.
Redox chemistry of green tea polyphenols therapeutic benefits in neurodegenerative diseases.Crossref | GoogleScholarGoogle Scholar | 22303970PubMed |

Ji, L. L. (1995). Oxidative stress during exercise: implication of antioxidant nutrients. Free Radical Biology & Medicine 18, 1079–1086.
Oxidative stress during exercise: implication of antioxidant nutrients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlOkuro%3D&md5=890867e22e3e18fdc2a909126e103599CAS |

Katalinic, V., Milos, M., Kulisic, T., and Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry 94, 550–557.
Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsF2gsbk%3D&md5=ba65cf526ab0e3930e0301bb55267b8bCAS |

Lee, S. E., Hwang, H. J., Ha, J. S., Jeong, H. S., and Kim, J. H. (2003). Screening of medicinal plant extracts for antioxidant activity. Life Sciences 73, 167–179.
Screening of medicinal plant extracts for antioxidant activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVWksLg%3D&md5=20bf6a916c71c3605dbcbce7fbd4a905CAS | 12738032PubMed |

Leiber, F., Kreuzer, M., Nigg, D., Wettstein, H.-R., and Scheeder, M. R. L. (2005). A study on the causes for the elevated n-3 fatty acids in cow’s milk of alpine origin. Lipids 40, 191–202.
A study on the causes for the elevated n-3 fatty acids in cow’s milk of alpine origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs12qsbw%3D&md5=b7bca3533fa248af9b9cb922f7086ea6CAS | 15884768PubMed |

Long, R. J., and Ma, Y. S. (1996). Qinghai’s yak production system. In: ‘Conservation and Management of Yak Genetic Diversity’. (Eds D. J. Miller, S. R. Craig and G. M. Rana.) pp. 105–115. (ICOMOD: Kathmandu, Nepal.)

Long, R. J., Apori, S. O., Castro, F. B., and Ørskov, E. R. (1999a). Feed value of native forages of the Tibetan plateau of China. Animal Feed Science and Technology 80, 101–113.
Feed value of native forages of the Tibetan plateau of China.Crossref | GoogleScholarGoogle Scholar |

Long, R. J., Zhang, D. G., Wang, X., Hu, Z. Z., and Dong, S. K. (1999b). Effect of strategic feed supplementation on productive and reproductive performance in yak cows. Preventive Veterinary Medicine 38, 195–206.
Effect of strategic feed supplementation on productive and reproductive performance in yak cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7otFKmsw%3D%3D&md5=ec477a55486311eb366b8550f9e25b97CAS | 10081799PubMed |

López-Andrés, P., Luciano, G., Vasta, V., Gibson, T. M., and Biondi, L. (2013). Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep. British Journal of Nutrition 110, 632–639.
Dietary quebracho tannins are not absorbed, but increase the antioxidant capacity of liver and plasma in sheep.Crossref | GoogleScholarGoogle Scholar | 23312208PubMed |

Ma, Y. S., Xu, H. F., and Yang, S. H. (2012). ‘The Atlas of Grassland Plants in the Source Region of the Yangtze, Yellow and Lantsang Rivers.’ 1st edn. (Science Press: Beijing, China.)

Makkar, H. P. S. (1993). Antinutritional factors in foods for livestock. In: ‘Animal Production in Developing Countries’. Occasional publication no. 16. (Eds M. Gill, E. Owen, G. E. Pollott and T. L. J. Lawrence.) pp. 69–85. (British Society of Animal Production: Penicuik, UK.)

Makkar, H. P. S., Blüemmel, M., Borowy, N. K., and Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture 61, 161–165.
Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVCms7o%3D&md5=f720918d53709d04e160b4280770695cCAS |

Min, B. R., Pomroy, W. E., Hart, S. P., and Sahlu, T. (2004). The effect of short-term consumption of a forage containing condensed tannins on gastro-intestinal nematode parasite infections in grazing wether goats. Small Ruminant Research 51, 279–283.
The effect of short-term consumption of a forage containing condensed tannins on gastro-intestinal nematode parasite infections in grazing wether goats.Crossref | GoogleScholarGoogle Scholar |

Mora, A., Paya, M., Rios, J. L., and Alcaraz, M. J. (1990). Structure-activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochemical Pharmacology 40, 793–797.
Structure-activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls1Cqt7c%3D&md5=b5710ffcd7d54bdf74974ec10a3e04f6CAS | 2386548PubMed |

O’Connell, J. E., and Fox, P. F. (2001). Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review. International Dairy Journal 11, 103–120.
Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Shsbg%3D&md5=a10ab83de4493f13f21de6df57e96a11CAS |

Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, E., Serrano, J., Goñi, I., and Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International 41, 274–285.
Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results.Crossref | GoogleScholarGoogle Scholar |

Pourzand, C., and Tyrrell, R. M. (1999). Apoptosis, the role of oxidative stress and the example of solar UV radiation. Photochemistry and Photobiology 70, 380–390.
Apoptosis, the role of oxidative stress and the example of solar UV radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVaiurg%3D&md5=af37702f45bbda22b7b9a3b1edee3913CAS | 10546543PubMed |

Provenza, F. D., Meuret, M., and Gregorini, P. (2015). Our landscapes, our livestock, ourselves: Restoring broken linkages among plants, herbivores, and humans with diets that nourish and satiate. Appetite 95, 500–519.
Our landscapes, our livestock, ourselves: Restoring broken linkages among plants, herbivores, and humans with diets that nourish and satiate.Crossref | GoogleScholarGoogle Scholar | 26247703PubMed |

Pulido, R., Hernández-García, M., and Saura-Calixto, F. (2003). Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet. European Journal of Clinical Nutrition 57, 1275–1282.
Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVOqu7s%3D&md5=a12f17e9631f4ff29af21254342adbc9CAS | 14506489PubMed |

Re, R., Pellegrini, N., Preoteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine 26, 1231–1237.
Antioxidant activity applying an improved ABTS radical cation decolorization assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVakt7o%3D&md5=cfd5a0f05f54dca384cb7ff42dd4aa76CAS |

Reed, J. D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science 73, 1516–1528.
| 1:CAS:528:DyaK2MXlsFSju70%3D&md5=9ff7872afbc1a4df2f28f3d32b325e36CAS | 7665384PubMed |

Renzing, J., Hansen, S., and Lane, D. P. (1996). Oxidative stress is involved in the UV activation of p53. Journal of Cell Science 109, 1105–1112.
| 1:CAS:528:DyaK28Xjtlylsbc%3D&md5=bdf5b0db2eeaf3c67e2b1d4692b28fa0CAS | 8743957PubMed |

Robbins, C. T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., Schwartz, C. C., and Mautz, W. W. (1987). Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68, 98–107.
Role of tannins in defending plants against ruminants: reduction in protein availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlGmtrg%3D&md5=7c56b8459b4947f65601af3715e9f273CAS |

Sánchez-Moreno, C., Larrauri, J. A., and Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76, 270–276.
A procedure to measure the antiradical efficiency of polyphenols.Crossref | GoogleScholarGoogle Scholar |

Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. The American Journal of Clinical Nutrition 54, 438–463.
| 1:CAS:528:DyaK3MXmtVKlurw%3D&md5=daabee52038993ee41c2e277f744f8ffCAS | 1908631PubMed |

Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. The American Journal of Clinical Nutrition 70, 560S–569S.
| 1:CAS:528:DyaK1MXmtVais78%3D&md5=6bedf1e808188bb02cd7fb9e4e30687dCAS | 10479232PubMed |

Torregrossa, A.-M., and Dearing, M. D. (2009). Nutritional toxicology of mammals: regulated intake of plant secondary compounds. Functional Ecology 23, 48–56.
Nutritional toxicology of mammals: regulated intake of plant secondary compounds.Crossref | GoogleScholarGoogle Scholar |

Van Soest, P. J., Robertson, J. B., and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583–3597.
Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnvVCltA%3D%3D&md5=e9537521d5ef9431138676b2d97a4b7eCAS | 1660498PubMed |

Wiener, G., Han, J. L., and Long, R. J. (2003). ‘The Yak.’ 2nd edn. (RAP Publication: Bangkok, Thailand.)

Xin, G. S. (2010). The mineral dynamics of soil-plant-animal system from northeast of the Qinghai-Tibetan plateau. PhD Thesis, Lanzhou University, China.

Zarban, A., Taheri, F., Chahkandi, T., Sharifzadeh, G., and Khorashadizadeh, M. (2009). Antioxidant and radical scavenging activity of human colostrum, transitional and mature milk. Journal of Clinical Biochemistry and Nutrition 45, 150–154.
Antioxidant and radical scavenging activity of human colostrum, transitional and mature milk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWrsbvI&md5=5597984d333773639af2f51832851995CAS | 19794922PubMed |

Zhang, S. Y., and Ma, Z. Y. (1982). The physiological influence of low temperature at night on some herbage in Qinghai-Xizang plateau. In: ‘Alpine Meadow Ecosystem’. (Ed. W. P. Xia.) pp. 52–57. (Gansu People’s Publishing House: Lanzhou, Gansu, China.)

Zheng, R. L., and Huang, Z. Y. (2008). ‘Free Radical Biology.’ 3rd edn. (Higher Education Press: Lanzhou, China.)