THE EFFECT OF CARBOHYDRATE DISACCHARIDE MOLECULES ON THE RAMAN SPECTRA OF H₂O AND D₂O

I. T. Shadi¹, A. A. Decroix², R. Withnall¹*, S. A. Leharne¹ and B. Z. Chowdhry¹*

¹Vibrational Spectroscopy Centre, School of Science, University of Greenwich, Medway Campus, Pembroke, Chatham, Kent, ME4 4TB, UK;
E-mail: b.z.chowdhry@gre.ac.uk
²Laboratoire de Dynamique et Structure des Matériaux Moléculaires, UMR 8024, Université de Lille1 – 59665 Villeneuve d’Ascq cedex, France

Keywords: vibrational spectroscopy, Raman, maltose, sucrose, trehalose

Abstract: The effects of the disaccharides maltose, sucrose and trehalose on the Raman spectra of H₂O and D₂O have been examined.

Trehalose (α-D-glucopyranosyl-α-D-glucopyranoside; Fig. 1) is a non-reducing disaccharide which is widespread in nature. It is used as an “active stabilizer” [1] of e.g. proteins and pharmaceutical preparations. In fact it has been suggested that the protein stabilization properties of trehalose might be made use of in preventing protein aggregation in amyloid disorders [2]. Moreover trehalose is recognized as a crucial defense mechanism in a variety of organisms for in vivo stabilization of proteins and biological membranes under a variety of stress conditions including increased temperature, hydrostatic pressure, desiccation, nutrient starvation, osmotic or oxidative stress and exposure to toxic chemicals [3]. The mechanisms of bioprotection by the disaccharides maltose, sucrose and trehalose are not well understood. However, the mechanism may well derive (at least in part) from the unique physico-chemical properties of water.

In the studies reported herein the effects of the disaccharides maltose, sucrose and trehalose on the Raman spectra of H₂O and D₂O have been examined using a laser exciting wavelength equal to 632.8 nm.

Fig. 1. Schematic chemical structure of trehalose.

The effects of different concentrations of trehalose on the Raman spectrum of D₂O in the 2000-3000 cm⁻¹ region are shown in Fig. 2.
Fig. 2. Raman spectra of D$_2$O in the presence of different concentrations (0-1 mol dm$^{-3}$) of trehalose. All spectra were obtained at room temperature.

The presentation will discuss the details relating to a comparison of the vibrational spectra of the different disaccharides solubilized in H$_2$O and D$_2$O.

Acknowledgements:
R.W. and B.Z.C. wish to acknowledge the EPSRC (ref. GR/L85176) and Instruments S.A., Ltd for jointly funding the purchase of the Labram Raman Spectrometer. The work reported herein has been partially funded by an INTERREG IIIa grant.

References: