S16-016

Spectroscopic studies of chemiluminescence by Mn⁺⁺-activated rubisco: Singlet oxygen is entirely absent and the emission spectrum differs between forms of rubisco.

<u>RMcC Lilley¹</u>, X-Q Wang², E Krausz², TJ Andrews³

¹Department of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong 2522 Australia. Fax: 6142 214 135 Email: rossl@uow.edu.au

²*Research School of Chemistry, Australian National University, Canberra, ACT 0200 Australia.*

³*Research School of Biological Sciences, Australian National University, PO Box 475, Canberra, ACT 0200, Australia*

Keywords: rubisco, manganese, chemiluminescence spectrum, singlet oxygen

Introduction

Near-infrared chemiluminescence is emitted when Mn⁺⁺-activated rubisco is catalysing its oxygenase reaction (Mogel & McFadden, 1990; Lilley et al 1993; Cox et al 1999). Neither the physiological cofactor, Mg⁺⁺, nor any other metal ion has been found to support observable luminescence. An incomplete spectrum of the emitted light, with a maximum near 800 nm, was consistent with the characteristics of Mn⁺⁺ luminescence and showed no signs of the peaks at 633 and 703 nm that are diagnostic of the dimolecular decay of singlet O₂ (Lilley et al 1993). This contradicts the suggestion that singlet O₂ might have a role in the luminescence Mogel & McFadden (1990). Here we performed a more direct spectroscopic test for singlet O₂ involvement, seeking to observe the much more intense emission at 1268 nm associated with its monomolecular transition to the triplet O₂ ground state. This can be observed in aqueous conditions when singlet O₂ is generated enzymically (Khan 1984). Prompted by observations that the luminescence yield appeared to differ between rubiscos from different sources (Cox et al 1999), we also determined whether the spectral distribution of the radiation was similarly affected by measuring a more complete spectrum of the chemiluminescence with a very sensitive spectrograph.

Methods

Rubisco preparations. Rubisco from spinach was purified by anion exchange chromatography and from tobacco by crystallisation. The rbcM gene from *Rhodospirillum rubrum* encoding an N-terminal histidine tag was expressed in *E.coli* and the recombinant protein purified by Ni-NTA agarose chromatography (Qiagen).

Broadband survey of visible and infrared emission. Total luminescence emitted during oxygenation was monitored simultaneously with a red-sensitive, high-gain photomultiplier (Hamamatsu R943-02, sensitive to wavelengths from 300 to 800 nm) and a cooled germanium detector (Applied Detector Corp. 403L, most sensitive to

wavelengths between 1100 to 1700 nm, but with low level sensitivity to wavelengths as short as 700 nm) positioned on opposite sides of the source (Fig. 1). The source was either a quartz cuvette containing enzyme reaction mixtures or a tungsten lamp for calibration. Filters were interposed between the source and the detectors to select various ranges of wavelengths. Spinach rubisco (197 µg/ml) was preincubated for 10 min in 24.4 mM tris-HCl, 0.19 mM EDTA, 1.9 mM MnCl₂, 3.9 mM NaHCO₃ in H₂O or ²H₂O (pH/pD 8.2). Luminescence was started by the addition of D-ribulose-1,5-bisphosphate (RuBP) to 193 µM. Singlet O₂ was generated by lactoperoxidase-catalysed decomposition of H₂O₂ in the presence of Br⁻ (Kanofsky 1983). Lactoperoxidase (0.1 mg) dissolved in 1 ml of 200 mM NaBr. After thorough mixing, luminescence was started by adding 0.1 ml of 200 mM H₂O₂ onto the top of the solution without additional mixing.

Near-infrared spectrum. An f4 0.5m spectrograph was constructed using a backthinned, charge-coupled detector and low-dispersion grating blazed at 800nm. This system could accumulate an entire spectrum in a few seconds (eg. 650 - 890 nm). The spectra were calibrated and corrected for the wavelength dependence of the sensitivity by reference to blackbody radiation from a tungsten filament of known temperature (determined by an optical pyrometer, Leeds and Northrup 8627).

Results and Discussion:

Figure 1. Setup for detecting luminescence.

Photomultiplier output (nA)	Filter 1	Source	Filter 2	Ge detector output (mV)
0.6	nil	Rubisco in H ₂ O	nil	0.6
0.55	nil	Rubisco in H ₂ O	<1000 nm	0.05
			cutoff	
0.6	nil	Rubisco in H ₂ O	<1200 nm	0
			cutoff	
1.2	nil	Rubisco in 98% ² H ₂ O	nil	1.2
1.1	nil	Rubisco in 98% ² H ₂ O	<1100 nm	0
			cutoff	
0	<650 nm	Lactoperoxidase in	<1200 nm	>1,000
	cutoff	H_2O	cutoff	
0.13	762 nm	Calibration lamp	762 nm	10
	interference		interference	

Table 1. Detector outputs for a range of experimental conditions and filter sets

No emission beyond 1100 nm.

Rubisco chemiluminescence was detected by both the photomultiplier and the Ge detector without filters. Using filters, no radiation was detected by the Ge detector above 1100 nm with H_2O or 2H_2O as solvent. As a positive control, a strong signal decaying over 5 s was measured at wavelengths longer than 1200 nm by the Ge detector when singlet O_2 was generated by lactoperoxidase. In this case, no radiation at wavelengths longer than 650 nm was detected by the photomultiplier.

The relative sensitivity of the two detectors at 762 nm was estimated from their responses to light from the same source. From this and the sensitivity of the Ge detector at 1268 nm relative to 762 nm radiation (manufacturer's specifications), an upper limit can be calculated for any radiation emitted by the rubisco samples at wavelengths longer than 1100 nm. Thus we can conclude that the >1100 nm-emission is less than 10^{-6} of that detected by the photomultiplier at shorter wavelengths. Absence of the strong 1268-nm emission associated with the monomolecular decay of singlet O₂ eliminates the possibility that singlet O₂ contributes to rubisco chemiluminescence.

Near-infrared spectra. The emission spectra for Mn^{++} -activated spinach rubisco were determined in water and ²H₂O, with successive scans until the emission ceased due to depletion of the RuBP substrate (Fig. 2).

Figure 2. Emission spectra of chemiluminescence by spinach rubisco in (a) H_2O and (b) 96.5% ${}^{2}H_2O$. Reaction mixture (493 µg rubisco /ml) prepared as in Methods. The spectra were accumulated over consecutive 20 s intervals (every second spectrum shown) until the luminescence ceased upon exhaustion of RuBP. Each spectrum was compiled from 1340 data points (not shown) and the line represents the 4th order polynomial fit to the data.

The rubisco activity, estimated from time to depletion of RuBP, was similar in H_2O and 2H_2O (0.19 and 0.17 mol RuBP consumed [mol active sites s]⁻¹, respectively). Although the intensity of chemiluminescence was approximately doubled in the presence of 96.5% 2H_2O , the spectral peak averages (799 and 800 nm) and distributions were similar for both solvents.

The spectra of chemiluminescence emitted by tobacco wild-type and L335V mutant rubiscos (Fig. 3) were similar. However, the spectrum for the L_2 rubisco from *R. rubrum* differed substantially from the spectra of the L_8S_8 enzymes of spinach and tobacco. The *R. rubrum* enzyme exhibited peak intensity at 760 nm.

Figure 3 Emission spectra of chemiluminescence by rubisco in H₂O at 25°C. Tobacco wild-type and L335V mutant enzymes (6.21 mg/ml and 11.1 mg/ml respectively) were activated in 25 mM Tris-HCl, 0.2 mM EDTA, 2 mM MnCl₂, 10 mM NaHCO₃ (pH 8.1). The assay mixture (1.0 ml) contained 500 µg (wildtype) or 887 µg (L335V) of rubisco, 25 mM Tris-HCl, 0.1 mM EDTA, 2 mM MnCl₂, 0.8 mM NaHCO₃ (pH 8.1) and the oxygenase reaction was started by the addition of RuBP (to 772 µM). R. rubrum enzyme was activated in 23 mM Tris-HCl, 0.1 mM EDTA, 1.8 mM dithiothreitol, 2 mM MnCl₂, 40 mM NaHCO₃ (pH 8.1). The assay mixture (1.0 ml) contained 1.73 mg of rubisco, 24 mM Tris-HCl, 0.1 mM EDTA, 1.1 mM dithiothreitol, 2 mM MnCl₂, 21.7 mM NaHCO₃ (pH 8.1) and the oxygenase reaction was started by the addition of RuBP (to 772 µM). The R. rubrum intensity was multiplied by a factor of 8.

Conclusions.

These results show that singlet O_2 does not contribute to rubisco chemiluminescence. A small change in structure in the active site region of tobacco rubisco (Leu-335 \rightarrow Val) has no influence on the spectral distribution of rubisco chemiluminescence. In contrast, the L₂ enzyme from *R. rubrum* has a markedly different spectrum, which may arise from subtle differences in the coordination sphere of the Mn⁺⁺ ion at the active site.

Acknowledgements

We are grateful to Dr Spencer Whitney for provision of purified tobacco L335V and *R*. *rubrum* rubiscos, and to Dr Hans Riesen for advice on spectroscopy.

References

Cox SD, Lilley RMcC, Andrews, TJ (1999) Australian Journal of Plant Physiology 26, 475-484

Kanofsky (1983) Journal of Biological Chemistry 258, 5991-5993

Khan (1984) Journal of Photochemistry 25, 327-334

Lilley RMcC, Riesen H, Andrews TJ (1993). *Journal of Biological Chemistry* **268**, 13877-13884.

Mogel SN, McFadden BA (1990). Biochemistry 29, 8333-8337.