
S3-039 

Adaptation of photosynthesis of Chlorella spp. to light conditions: changes 

in efficiency of charge separation detected by in vivo delayed fluorescence 

excitation spectroscopy 

U Bodemer 

Department of Botany, University of Vienna, author’s address: Schlüsselacker-Str. 8, D-
93161 Sinzing. ute.bodemer@physik.uni-regensburg.de 

Keywords: delayed fluorescence, D1 protein, light adaptation, photoprotection, xanthophyll 
cycle pigments 

Introduction 

Delayed fluorescence (DF) occurs in photosynthetically active material. It originates from re-
combination of an electron at the oxidized reaction center P680 in the dark. Research on the 
complex behaviour of the DF (Gerhardt and Bodemer 2000 and references cited therein) has 
led to the conclusion that DF can be used to determine concentrations of photosynthetically 
active pigments and to analyse phytoplankton compositions in freshwaters (Bodemer 1998, 
Bodemer et al. 2000). DF excitation spectroscopy is also a fast in vivo method to investigate 
processes occurring within the antenna of PSII and within the electron transport chain 
(Gerhardt and Bodemer 2001). Measuring DF excitation spectra of algal cultures have shown 
changes in pigment composition (Gerhardt and Bodemer 2000). It was investigated whether 
growth light conditions cause these changes. 

Materials and methods 

Culture growth conditions. Chlorella spp. were grown under various light conditions: con-
stant white low light (LL1 (n=number of samples=11): 4 µEinst m-2 s-1, LL2 (n=17): 30 
µEinst m-2 s-1), constant white high light (HL (n=25): 285 µEinst m-2 s-1), constant red light 
(610 nm, RL (n=16): 10 µEinst m-2 s-1), constant blue light (482 nm, BL (n=13): 3 µEinst m-2 
s-1) and daylight (greenhouse, no air-condition, G-HL (n=10): 430 µEinst m-2 s-1 (∅ ), G-LL 
(n=16): 70 µEinst m-2 s-1 (∅ )). All cultures were grown as semi-continuous cultures, bubbled 
with air. Growth temperature was 21-25oC, except for the greenhouse cultures (8-25oC). 
Inhibitor treatment. Lincomycin (10 ml of 1 mM solution) and dithiothreitol (DTT) (10 ml of 
1 mM solution) were added to LL and HL cultures (750 ml, 100 µg L-1 [chla]) and exposed to 
low (30 µEinst m-2 s-1) and high (285 µEinst m-2 s-1) light, respectively for one hour (LL-
lin10, HL-lin10, LL-dtt10, HL-dtt10). 
DF measurement. DF excitation spectra were taken at 21oC. Details of the method are de-
scribed in Gerhardt and Bodemer 2000. 
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Results and Discussion 

The DF excitation spectra (normalized to 1 µg L-1 chlorophyll [chla]) of Chlorella spp. cul-
tures grown under different light conditions are shown in Fig. 1 (statistical data: see Fig. 2). 
 

 
Fig.2. Statistical box diagram of DF integrals 
of the measured DF excitation spectra. 
t-test of two independent populations: 

 

LL1 (n=11)/G-LL (n=16): t = -3.87,  p = 0.0006 

LL1 (n=11)/G-HL (n=10): t = -7.77,  p < 0.0001 

LL1 (n=11)/RL (n=16): t = 2.629,  p = 0.014 

LL1 (n=11)/BL (n=13): t = -2.595,  p = 0.017 

G-LL (n=16)/G-HL  (n=10): t = -4.181,  p = 0.0003 

LL2 (n=17)/HL (n=25): t = -11.367, p < 0.0001 
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Fig.1.a, b. DF excitation 
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light conditions (number 
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Changes of efficiency of charge separation at P680 
compared to light regime LL1 [%] 
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to light absorption is wavelength-specific, varying e.g. in RL cultures compared to LL1 
cultures from an increase of 22.9 % (400-450 nm) to 7 % (510-600 nm) or in G-LL cultures  

 

Fig. 4. Ratios of DF spectra (normalized at 
674 nm) of three different light regimes. 
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cultures exhibit the highest DF intensity. Red photons lead to a very efficient charge 
separation at P680 because no zeaxanthin is necessary to dissipate high energy of blue 
photons and the turnover of D1 protein is working. 

The lower DF intensity of BL cultures (compared to LL1 cultures) is caused – despite similar 
low light intensity – by destruction of D1 protein and formation of protection pigment 
zeaxanthin to dissipate light energy absorbed in the blue wavelength region. The turnover 
of D1 protein might work less efficiently due to the very low light intensity from which 
energy for all metabolic processes has to be drawn. 

First experiments adding lincomycin, an inhibitor of D1 protein synthesis, and dithiothreitol 
(DTT), an inhibitor of zeaxanthin synthesis, support these conclusions. Lincomycin leads in 
HL as well as in LL cultures to a decrease of DF intensity (Fig. 5.a), i.e. to an inactivation of 
functional PSIIs of about 25 % in HL and about 10 % in LL cultures which corresponds in 
principle to results with chloramphenicol-treated Dunaniella salina (Kim et al. 1993) and 
lincomycin-treated leafs (Anderson et al. 1998). DTT treatment should lead to an inhibition of 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Ratios of DF spectra. a. Linco-
mycin-treated HL and HL Chlorella spp. 
cultures (HL-lin10 / HL, □ ) and 
Lincomycin-treated LL and LL Chlorella 
spp. cul-tures (LL-lin10 / LL, ∇ ). b. DTT-
treated HL and HL Chlorella spp. cultures 
(HL-dtt10 / HL, o) and DTT-treated LL 
and LL Chlorella spp. cultures (LL-dtt10 / 
LL, ∆). 10 ml 1mM of the inhibitors was 
added to 750 ml culture of 100 µg L-1 
[chla]. 

zeaxanthin synthesis causing decreased energy dissi-
pation (Bilger and Björkman 1990, Wild et al. 1995, 
Demmig-Adams et al. 1996). The effects on DF in-
tensity by adding DTT to HL and LL cultures could be 
interpreted as follows (Fig. 5.b): In LL cultures (open ∆) 
there occurs no or almost no change in efficiency of 
charge separation at P680 (ratio = ± 0.99) because no or 
only few zeaxanthin is present or built up under the used 
low light conditions. Therefore, an inhibition of 
zeaxanthin synthesis by DTT will cause no changes. 
However, in HL cultures (open o) an effect of DTT 
treatment could be observed: The DF intensity is 
reduced. Decreased energy dissipation due to less 
zeaxanthin is not evident (DF ratio should be >1 or 
between 400 and 500 nm higher than in the remaining 
spectral range). The decrease in DF intensity seems to 
be caused by an increased destruction of D1 reaction 
center protein and (like in the lincomycin-treated HL 
culture) the efficiency of charge separation at P680 
decreases (compare shapes of the lincomycin-treated (□ 
in Fig. 5.a) and DTT-treated (o in Fig. 5.b) HL cultures). 
This interpretation corresponds to the observed 
increased susceptibility to photoinhibition in DTT-
treated leaves (Bilger and Björkman 1990). 
Further investigations, especially comparing DF and 
HPLC results, will elucidate the observed processes 
within the antenna of PSII. 
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