S40-007

The entire gene organization of rice chloroplast DNA --- 2001 update

<u>J Tsudzuki</u>¹, T Tsudzuki², T Wakasugi³, K Kinoshita⁴, T Kondo⁴, M Sugiura⁵

¹School of Life Studies, Sugiyama-Jogakuen University, Nagoya 464-8662, Japan.

²Department of Information and Policy Studies, Aichi-Gakuin University, Nisshin 470-0195, Japan.

³Department of Biology, Toyama University, Toyama 930-8555, Japan.

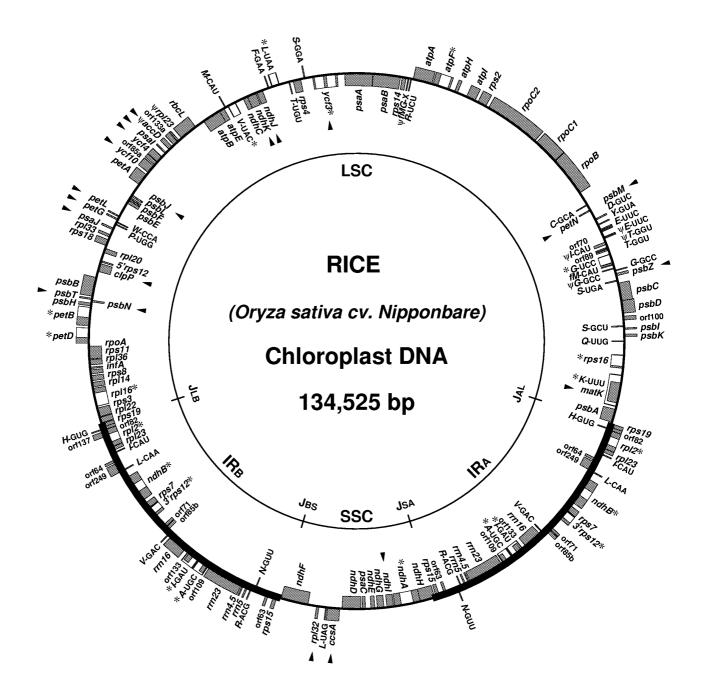
⁴CTI Co., Nagoya, 450-0003, Japan.

⁵Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan.

Key words: chloroplast genome, Oryza sativa, gene organization

Introduction

The entire nucleotide sequence of the chloroplat genome (134,525 bp) from rice, *Oryza sativa* cv. *Nipponbare*, was determined and published in 1989 (Hiratsuka et al., 1989, Accession No. X15901). The rice chloroplast genes were identified by homology to their tobacco counterparts (Hiratsuka et al., 1989, Shimada et al., 1990, Shimada and Sugiura 1991). Since then, new genes in chloroplast have been identified with several methods (Stoebe et al., 1998, Hager et al., 1999, Swiatek et al., 2001) and update for the tobacco counterpart was summarized lately (Wakasugi et al., 1998). Here we summarize the newly identified genes in rice chloroplast genome during 12 years, and comparison made among the three completely sequenced chloroplast DNAs from monocot plants.


Result and Discussion

Newly identified genes

Nineteen new protein-coding genes have been identified on the genome since the first publication. The former *psbG* gene was renamed to *ndhK*. The *accD* is present as a pseudogene. Positions of these genes are shown on circle map of the genome illustrated in Figure 1 and listed in Table 1 according to those functions. There are 34 RNA genes, 74 protein-coding genes (including $\psi accD$), 3 hypothetical chloroplast open reading frames (*ycfs*), altogether 111 genes and *ycfs* in the genome. All these are listed in Table 2. The *sprA* found in tobacco (Vera and Sugiura, 1994) is not present in rice. The *rnpB* found in algae (Baum, et al., 1996) and supposed in maize (Collins, et al., 2000) is not confirmed yet in rice although partial homology is detected.

Comparison among monocot chloroplast DNAs

All genes and *ycfs* except $\psi accD$ (total 110 genes) in the genome are shared with other entirely sequenced chloroplast genome from monocot plants, maize (140,387 bp, Maier et al., 1995, Accession No. X86563) and wheat (134,545 bp, Ogihara et al., 2000, Accession No. AB042240). Arrangements of those genes on three genomes are essentially the same. Three genomes also share several pseudogenes which located at inversion breakpoints (Shimada and Sugiura, 1989), but the $\psi accD$ is found in neither maize nor wheat. Seventeen ORFs (60 codons or more in rice) are conserved among three monocot genomes, these include lately proposed 9 *ycfs* (*ycf68 -- ycf76*) (Stoebe et al., 1998).

Figure 1. Genes and *ycfs* shown inside the circle are transcribed clockwise, and those on the outside are transcribed counter-clockwise. Newly identified genes (including $\psi accD$ and renamed) and *ycfs* are indicated with triangle. ORFs (60 codons or more) are also illustrated. Asterisks indicate intron-containing genes.

Function	Gene	Position		Former nome
		From	То	Former name
Photosystem I	psaI	57,222	57,332	ORF36
	psaJ	64,622	64,756	ORF44
Photosystem II	psbJ	61,687	61,565	ORF40
	psbM	16,685	16,789	ORF34
	psbN	70,777	70,646	ORF43
	psbT	70,490	70,597	<i>ycf8</i> (ORF35)
	psbZ	11,937	12,125	<i>ycf9</i> (ORF62)
	petG	63,799	63,912	ORF37
Cytochrome b/f complex	petL	63,531	63,626	<i>ycf</i> 7 (ORF31)
	petN	17,645	17,556	<i>ycf6</i> (ORF29)
Ribosomal protein	rpl32	104,352	104,543	ORF63
NADU	ndhI	110,536	110,000	ORF178
NADH dehydrogenase	ndhJ	48,471	47,988	ORF159
	ndhK	49,309	48,569	psbG
Other protein gene	ccsA	105,236	106,201	<i>ycf5</i> (ORF321)
	clpP	68,288	67,638	ORF216
	matK	3,296	1,668	ORF542
	уассД	56,553	56,873	pseudogene,
				ORF106
ycfs	ycf3	43,837	41,851	IRF170
	ycf4	57,702	58,259	ORF185
	ycf10	58,677	59,369	cemA, HBP(ORF230

 Table 1. Newly Identified Rice Chloroplast Genes and ycfs during the Past 12 Years

	Protein genes
Photosynthesis	
Photosystem I	psaA, psaB, psaC, psaI, psaJ
Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ,
	psbK, psbL, psbM, psbN, psbT, psbZ
Cytochrome b/f	petA, *petB, *petD, petG, petL, petN,
complex	
ATP synthese	atpA, atpB, atpE, *atpF, atpH, atpI
Rubisco	rbcL
Ribosomal proteins	
Large subunits	*rpl2, rpl14, *rpl16, rpl20 rpl22, rpl23, rpl32, rpl33, rpl36
Small subunits	rps2, rps3, rps4, rps7, rps8, rps11, *rps12, rps14, rps15,
	*rps16, rps18, rps19
Transcription/translation	
RNA polymerase	rpoA, rpoB, rpoC1, rpoC2
Translation factor	infA
NADH-dehydrogenase	*ndhA, *ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH,
	ndhI, ndhJ, ndhK
Other protein genes	ccsA, clpP, matK, ψaccD
<i>ycf</i> s	*ycf3, ycf4, ycf10
number	of protein genes: 77 (including pseudogene)

 Table 2. Genes Contained in the Rice Chloroplast Genome

Table 2.	Continued
----------	-----------

RNA	genes
-----	-------

Ribosomal RNAs	rrn23, rrn16, rrn5, rrn4.5
Transfer RNAs	*trnA(UGC), trnC(GCA), trnD(GUC), trnE(UUC),
	trnF(GAA), trnG(GCC), *trnG(UCC), trnH(GUG),
	trnI(CAU), *trnI(GAU), *trnK(UUU), trnL(CAA),
	*trnL(UAA), trnL(UAG), trnM(CAU), trnfM(CAU),
	trnN(GUU), trnP(UGG), trnQ(UUG), trnR(ACG),
	trnR(UCU), trnS(GCU), trnS(GGA), trnS(UGA),
	<pre>trnT(GGU), trnT(UGU), trnV(GAC), *trnV(UAC),</pre>
	trnW(CCA), trnY(GUA)
	number of RNA genes: 34
Tota	l gene number: 111 (including pseudogene)

* indicates intron-containing genes.

References

Baum, M., Cordier, A. and Schön, A. (1996) *Journal of Molecular Biology* 257, 43-52

- Collins, L.J., Moulton, V. and Penny, D. (2000) Journal of Molecular Evolution 51, 194-204
- Hager, M., Biehler, K., Illerhaus, J, Ruf, S. and Bock, R. (1999) *EMBO Journal* **18**, 5834-5842
- Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.R., Meng, B.Y., Li, Y.Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K. and Sugiura, M. (1989) *Molecular and General Genetics* 217, 185-194
- Maier, R.M., Neckermann, K., Igloi, G.L. and Kössel, H. (1995) Journal of Molecular Biology 251, 614-628
- Ogihara, Y., Isono, K., Kojima. T., Endo, A., Hanaoka, M., Shiina, T., Terachi, T., Utsugi, S., Murata, M., Mori, N., Takumi, S., Ikeo, K., Gojobori, T., Murai, R. Matsuoka Y, Ohnishi Y, Tajiri H and Tsunewaki, K. (2000) *Plant Molecular Biology Reporter* **18**, 243-253
- Shimada, H., Fukuta, M., Ishikawa, M. and Sugiura, M.(1990) Molecular and General Genetics 221, 395-402
- Shimada, H. and Sugiura, M. (1989) Current Genetics 16, 293-301
- Shimada, H. and Sugiura, M. (1991) Nucleic Acids Research 19, 983-995
- Stoebe, B., Martin, W. and Kowallik, K. (1998) *Plant Molecular Biology Reporter* **16**, 243-255
- Swiatek, M., Kuras, R., Sokolenko, A., Higgs, D., Olive, J., Cinque, G., Müller, B., Eichacker, LA., Stern, D.B. Bassi, R., Herrmann, R.G. and Wollman, F-A. (2001) *Plant Cell* 13, 1347-1368

Vera, A. and Sugiura, M. (1994) *EMBO Journal* 13, 2211-2217

Wakasugi, T., Sugita, M., Tsudzuki, T. and Sugiura, M.(1998) Plant Molecular Biology Reporter 16, 231-241