Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Analysing the assembly of cenocrons in the Mexican transition zone through a time-sliced cladistic biogeographic analysis

Violeta Corral-Rosas A B and Juan J. Morrone A C
+ Author Affiliations
- Author Affiliations

A Museo de Zoología ‘Alfonso L. Herrera’, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico.

B Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1er. Piso, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico.

C Corresponding author. Email: juanmorrone2001@yahoo.com.mx

Australian Systematic Botany 29(6) 489-501 https://doi.org/10.1071/SB16048
Submitted: 2 November 2016  Accepted: 16 March 2017   Published: 11 May 2017

Abstract

A transition zone shows the overlap between two or more regions and represents an event of biotic hybridisation, where different cenocrons assembled as a result of historical and ecological processes. The Mexican transition zone, the area where the Nearctic and Neotropical regions overlap, includes the following five biogeographical provinces: Sierra Madre Occidental, Sierra Madre Oriental, Sierra Madre del Sur, Transmexican Volcanic Belt and Chiapas Highlands. Within this transition zone, the following five cenocrons have already been recognised: Paleoamerican, Mexican Plateau, Mountain Mesoamerican, Nearctic and Typical Neotropical. We undertook three cladistic biogeographic analyses on the basis of 49 cladograms of terrestrial taxa, partitioning them into three time-slices, namely, Miocene (Mountain Mesoamerican cenocron), Pliocene (Mountain Mesoamerican plus Nearctic cenocrons) and Pleistocene (Mountain Mesoamerican, Nearctic and Typical Neotropical cenocrons). For the Miocene time-slice, we observed a close relationship of the Transmexican Volcanic Belt with the Neotropical region, whereas, for the Pliocene and Pleistocene time-slices, the closest relationship of the Transmexican Volcanic Belt was with the Nearctic region. We conclude that the Transmexican Volcanic Belt may have played a different role according to the cenocron analysed, and that the Mexican transition zone differs in its delimitation depending on the taxa analysed, strengthening the idea that it is a complex area.

Additional keywords: cladistic biogeography, dispersal, vicariance.


References

Aguirre-Planter E, Jaramillo-Correa J, Gómez-Acevedo S, Khasa D, Bousquet J, Eguiarte L (2012) Phylogeny, diversification rates and species boundaries of Mesoamerican firs (Abies, Pinaceae) in a genus-wide context. Molecular Phylogenetics and Evolution 62, 263–274.
Phylogeny, diversification rates and species boundaries of Mesoamerican firs (Abies, Pinaceae) in a genus-wide context.CrossRef |

Arbeláez-Cortés E, Nyári AS, Navarro-Sigüenza A (2010) The differential effect of lowlands on the phylogeographic pattern of a Mesoamerican montane species (Lepidocolaptes affinis, Aves: Furnariidae). Molecular Phylogenetics and Evolution 57, 658–668.
The differential effect of lowlands on the phylogeographic pattern of a Mesoamerican montane species (Lepidocolaptes affinis, Aves: Furnariidae).CrossRef |

Arellano E, Rogers D, Cervantes F (2003) Genetic differentiation and phylogenetic relationships among tropical harvest mice (Reithrodontomys: subgenus Aporodon). Journal of Mammalogy 84, 129–143.
Genetic differentiation and phylogenetic relationships among tropical harvest mice (Reithrodontomys: subgenus Aporodon).CrossRef |

Ávila-Valle Z, Castro-Campillo A, León-Paniagua L, Salgado-Ugalde I, Navarro-Sigüenza A, Hernández-Baños B, Ramírez-Pulido J (2012) Geographic variation and molecular evidence of the blackish deer mouse complex (Peromyscus furvus, Rodentia: Muridae). Mammalian Biology 77, 166–177.
Geographic variation and molecular evidence of the blackish deer mouse complex (Peromyscus furvus, Rodentia: Muridae).CrossRef |

Bonaccorso E, Navarro-Sigüenza A, Sánchez-González L, Peterson AT, García-Moreno J (2008) Genetic differentation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology 39, 311–321.
Genetic differentation of the Chlorospingus ophthalmicus complex in Mexico and Central America.CrossRef |

Bryson R, Riddle B (2012) Tracing the origins of widespread highland species: a case of Neogene diversification across the Mexican sierras in an endemic lizard. Biological Journal of the Linnean Society. Linnean Society of London 105, 382–394.
Tracing the origins of widespread highland species: a case of Neogene diversification across the Mexican sierras in an endemic lizard.CrossRef |

Bryson R, Pastorini J, Burbrink F, Forstner M (2007) A phylogeny of the Lampropeltis mexicana complex (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. Molecular Phylogenetics and Evolution 43, 674–684.
A phylogeny of the Lampropeltis mexicana complex (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis.CrossRef | 1:CAS:528:DC%2BD2sXlt1alt7c%3D&md5=4a7035e81bb73cb2a2bcfe0d7d336e7aCAS |

Bryson R, Murphy R, Graham M, Lathrop A, Lazcano D (2011) Ephemeral Pleistocene woodlands connect the dots for highland rattlesnakes of the Crotalus intermedius gruop. Journal of Biogeography 38, 2299–2310.
Ephemeral Pleistocene woodlands connect the dots for highland rattlesnakes of the Crotalus intermedius gruop.CrossRef |

Bryson R, García-Vázquez U, Riddle B (2012) Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape. Molecular Phylogenetics and Evolution 62, 87–96.
Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape.CrossRef |

Castoe TA, Daza JM, Smith EN, Sasa MM, Kuch U, Campbell JA, Chippindale PT, Parkinson CL (2009) Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. Journal of Biogeography 36, 88–103.
Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography.CrossRef |

Cecca F, Morrone JJ, Ebach MC (2011) Biogeographical convergence and time-slicing: concepts and methods in cladistic biogeography. In ‘Palaeogeography and Palaeobiogeography: Biodiversity in Space and Time’. (Eds P Upchurch, A McGowan, C Slater) Systematics Association Special Volume, pp. 1–12. (CRC Press: Boca Raton, FL, USA)

Contreras-Medina R, Luna Vega I, Morrone JJ (2007) Gymnosperms and cladistic biogeography of the Mexican transition zone. Taxon 56, 905–915.
Gymnosperms and cladistic biogeography of the Mexican transition zone.CrossRef |

Crawford A, Smith E (2005) Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 35, 536–555.
Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes.CrossRef | 1:CAS:528:DC%2BD2MXjvVKrsL0%3D&md5=913916a6a61c9a00037e22afc9a89a05CAS |

Devitt T (2006) Phylogeography of the western lyre snake (Trimorphodon biscutatus): testing aridland biogeographical hypotheses across the Nearctic–Neotropical transition. Molecular Ecology 15, 4387–4407.
Phylogeography of the western lyre snake (Trimorphodon biscutatus): testing aridland biogeographical hypotheses across the Nearctic–Neotropical transition.CrossRef | 1:CAS:528:DC%2BD2sXmvVSlsA%3D%3D&md5=899223f1af7fbfc2b5a25f35b3f25aa9CAS |

Eguiluz de Antuño S, Aranda M, Marret R (2000) Tectónica de la Sierra Madre Oriental, México. Boletín de la Sociedad Geológica Mexicana 53, 1–26.

Escalante T, Rodríguez G, Morrone JJ (2005) Las provincias biogeográficas del Componente Mexicano de Montaña desde la perspectiva de los mamíferos continentales. Revista Mexicana de Biodiversidad 76, 199–205.

Escalante T, Rodríguez G, Cao N, Ebach M, Morrone JJ (2007) Cladistic biogeography analysis suggests an early Caribbean diversification in Mexico. Naturwissenschaften 94, 561–565.
Cladistic biogeography analysis suggests an early Caribbean diversification in Mexico.CrossRef | 1:CAS:528:DC%2BD2sXmtFekt7o%3D&md5=11fbcc1e50684f1ee5d75005d0818ab8CAS |

Espinosa D, Llorente J, Morrone JJ (2006) Historical biogeographic patterns of the species of Bursera (Burseraceae) and their taxonomical implications. Journal of Biogeography 33, 1945–1958.
Historical biogeographic patterns of the species of Bursera (Burseraceae) and their taxonomical implications.CrossRef |

Feria-Ortiz M, Manríquez-Morán N, Nieto-Montes de Oca A (2011) Species limits based on MTDNA and morphological data in the polytypic species Plestiodon brevirostris (Squamata: Scincidae). Herpetological Monograph 25, 25–51.
Species limits based on MTDNA and morphological data in the polytypic species Plestiodon brevirostris (Squamata: Scincidae).CrossRef |

Ferro I, Morrone JJ (2014) Biogeographical transition zones: a search for conceptual synthesis. Biological Journal of the Linnean Society. Linnean Society of London 113, 1–12.
Biogeographical transition zones: a search for conceptual synthesis.CrossRef |

Flores-Villela O, Goyenechea I (2001) A comparison of hypotheses of historical biogeography for Mexico and Central America, or in search for the lost pattern. In ‘Mesoamerican Herpetology: Systematics, Zoogeography, and Conservation’. (Eds JD Johnson, RG Webb, O Flores Villela) pp. 171–181. (The University of Texas at El Paso: El Paso, TX, USA)

Flores-Villela O, Martínez-Salazar EA (2009) Historical explanation of the origin of the herpetofauna of Mexico. Revista Mexicana de Biodiversidad 80, 817–833.

Flores-Villela O, Kjer K, Benabib M, Sites J (2000) Multiple data sets, congruence, and hypothesis testing for the phylogeny of basal groups of the lizard genus Sceloporus (Squamata, Phrynosomatidae). Systematic Biology 49, 713–739.
Multiple data sets, congruence, and hypothesis testing for the phylogeny of basal groups of the lizard genus Sceloporus (Squamata, Phrynosomatidae).CrossRef |

Gámez N, Nihei SS, Scheinvar E, Morrone JJ (2017) A temporally dynamic approach for cladistic biogeography and the processes underlying the biogeographic patterns of North American deserts. Journal of Zoological Systematics and Evolutionary Research 55, 11–18.
A temporally dynamic approach for cladistic biogeography and the processes underlying the biogeographic patterns of North American deserts.CrossRef |

García-Moreno J, Cortés N, García-Deras G, Hernández-Baños B (2006) Local origin and diversification among Lampornis hummingbirds: a Mesoamerican taxon. Molecular Phylogenetics and Evolution 38, 488–498.
Local origin and diversification among Lampornis hummingbirds: a Mesoamerican taxon.CrossRef |

García-Trejo E, Espinosa de los Monteros A, Del Coro Arizmendi M, Navarro-Sigüenza A (2009) Molecular systematics of the red-bellied and golden-fronted woodpeckers. Condor 111, 442–452.
Molecular systematics of the red-bellied and golden-fronted woodpeckers.CrossRef |

Gernandt D, Liston A, Piñero D (2003) Phylogenetics of Pinus subsections Cembroides and Nelsoniae inferred from cpDNA sequences. Systematic Botany 28, 657–673.

González D, Vovides A (2002) Low intralineage divergence in Ceratozamia (Zamiaceae) detected with nuclear ribosomal DNA ITS and chloroplast DNA trnL-F-non-coding region. Systematic Botany 27, 654–661.

Guerrero J, De Luna E, González D (2004) Taxonomic status of Artibeus jamaicensis triomylus inferred from molecular and morphometric data. Journal of Mammalogy 85, 866–874.
Taxonomic status of Artibeus jamaicensis triomylus inferred from molecular and morphometric data.CrossRef |

Hafner M, Gates A, Mathis V, Demastes J, Hafner D (2011) Redescription of the pocket gopher Thomomys atrovarius from the Pacific coast of mainland Mexico. Journal of Mammalogy 92, 1367–1382.
Redescription of the pocket gopher Thomomys atrovarius from the Pacific coast of mainland Mexico.CrossRef |

Halffter G (1987) Biogeography of the montane entomofauna of Mexico and Central America. Annual Review of Entomology 32, 95–114.
Biogeography of the montane entomofauna of Mexico and Central America.CrossRef |

Hardy D, González-Cózatl F, Arellano E, Rogers D (2013) Molecular phylogenetics and phylogeographic structure of Sumichrast’s harvest mouse (Reithrodontomys sumichrasti: Cricetidae) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 68, 282–292.
Molecular phylogenetics and phylogeographic structure of Sumichrast’s harvest mouse (Reithrodontomys sumichrasti: Cricetidae) based on mitochondrial and nuclear DNA sequences.CrossRef |

Hernández-León S, Gernandt D, Pérez de la Rosa J, Jardón-Barbolla L (2013) Phylogenetic relationships and species delimitation in Pinus section Trifoliae inferred from plastid DNA. PLoS One 8, e70501
Phylogenetic relationships and species delimitation in Pinus section Trifoliae inferred from plastid DNA.CrossRef |

Honey-Escandón M, Hernández-Baños E, Navarro-Sigüenza A, Benítez-Díaz H, Townsend Peterson A (2008) Phylogeographic patterns of differentiation in the acorn woodpecker. The Wilson Journal of Ornithology 120, 478–493.
Phylogeographic patterns of differentiation in the acorn woodpecker.CrossRef |

Kerhoulas N, Arbogast B (2010) Molecular systematics and Pleistocene biogeography of Mesoamerican flying squirrels. Journal of Mammalogy 91, 654–667.
Molecular systematics and Pleistocene biogeography of Mesoamerican flying squirrels.CrossRef |

León-Paniagua L, Navarro-Sigüenza A, Hernández-Baños B, Morales J (2007) Diversification of the arboreal mice of the genus Habromys (Rodentia: Cricetidae: Neotominae) in the Mesoamerican highlands. Molecular Phylogenetics and Evolution 42, 653–664.
Diversification of the arboreal mice of the genus Habromys (Rodentia: Cricetidae: Neotominae) in the Mesoamerican highlands.CrossRef |

Liebherr JK (1991) A general area cladogram for montane Mexico based on distributions in the Platynine genera Elliptoleus and Calathus (Coleoptera: Carabidae). Proceedings of the Entomological Society of Washington 93, 390–406.

Liebherr JK (1994) Biogeographic patterns of montane Mexican and Central American Carabidae (Coleoptera). Canadian Entomologist 126, 841–860.
Biogeographic patterns of montane Mexican and Central American Carabidae (Coleoptera).CrossRef |

Light J, Hafner M (2008) Codivergence in Heteromyid rodents (Rodentia: Heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: Anoplura). Systematic Biology 57, 449–465.
Codivergence in Heteromyid rodents (Rodentia: Heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: Anoplura).CrossRef |

Marshall CJ, Liebherr JK (2000) Cladistic biogeography of the Mexican transition zone. Journal of Biogeography 27, 203–216.
Cladistic biogeography of the Mexican transition zone.CrossRef |

Miguez-Gutiérrez A, Castillo J, Márquez J, Goyenechea I (2013) Biogeografía de la zona de transición Mexicana con base en un análisis de árboles reconciliados. Revista Mexicana de Biodiversidad 84, 215–224.
Biogeografía de la zona de transición Mexicana con base en un análisis de árboles reconciliados.CrossRef |

Monteiro F, Peretolchina T, Lazoski C, Harris K, Dotson E, Abad-Franch F, Tamayo E, Pennington P, Monroy C, Cordon-Rosales C, Salazar-Schettino P, Gómez-Palacio A, Grijalva M, Beard C, Marcet P (2013) Phylogeographic pattern and extensive mitochondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata. PLoS One 8, e70974
Phylogeographic pattern and extensive mitochondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata.CrossRef | 1:CAS:528:DC%2BC3sXht12mtL%2FP&md5=da5b099d30c79db82f0cc75cf2981920CAS |

Montelongo T, Gómez-Zurita J (2014) Multilocus molecular systematics and evolution in time and space of Calligrapha (Coleoptera: Chrysomelidae, Chrysomelinae). Zoologica Scripta 43, 605–628.
Multilocus molecular systematics and evolution in time and space of Calligrapha (Coleoptera: Chrysomelidae, Chrysomelinae).CrossRef |

Morán-Zenteno D, Cerca M, Duncan Keppie J (2005) La evolución tectónica y magmática cenozoica del suroeste de México: avances y problemas de interpretación. Boletín de la Sociedad Geológica Mexicana 57, 319–341.

Moretti A, Caputo P, Cozzolino S, de Luca P, Gaudio L, Siniscalco G, Stevenson D (1993) A phylogenetic analysis of Dioon (Zamiaceae). American Journal of Botany 80, 204–214.
A phylogenetic analysis of Dioon (Zamiaceae).CrossRef |

Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology 51, 467–494.
Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna.CrossRef | 1:CAS:528:DC%2BD28XptlCmtA%3D%3D&md5=94fd9555d9c507c4983fc6a09ede19a3CAS |

Morrone JJ (2009) ‘Evolutionary Biogeography: an Integrative Approach with Case Studies.’ (Columbia University Press: New York, NY, USA)

Morrone JJ (2010) Fundamental biogeographic patterns across the Mexican transition zone: an evolutionary approach. Ecography 33, 335–361.

Morrone JJ (2014a) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782, 1–110.
Biogeographical regionalisation of the Neotropical region.CrossRef |

Morrone JJ (2014b) On biotas and their names. Systematics and Biodiversity 12, 386–392.
On biotas and their names.CrossRef |

Morrone JJ (2014c) Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30, 202–214.
Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota.CrossRef |

Morrone JJ (2015a) Biogeographical regionalisation of the world: a reappraisal. Australian Systematic Botany 28, 81–90.
Biogeographical regionalisation of the world: a reappraisal.CrossRef |

Morrone JJ (2015b) Halffter’s Mexican transition zone (1962–2014), cenocrons and evolutionary biogeography. Journal of Zoological Systematics and Evolutionary Research 53, 249–257.
Halffter’s Mexican transition zone (1962–2014), cenocrons and evolutionary biogeography.CrossRef |

Navarro-Sigüenza A, Peterson AT, Nyari A, García-Deras G, García Moreno J (2008) Phylogeography of the Buarremon brush-finch complex (Aves, Emberizidae) in Mesoamerica. Molecular Phylogenetics and Evolution 47, 21–35.
Phylogeography of the Buarremon brush-finch complex (Aves, Emberizidae) in Mesoamerica.CrossRef |

Oceguera-Figueroa A, León Regagnon V, Siddall M (2005) Phylogeny and revision of Erpobdelliformes (Annelida, Arhynchobdellida) from Mexico based on nuclear and mithochondrial gene sequences. Anales del Instituto de Biología, Serie Zoología 76, 191–198.

Ordóñez-Garza N, Thompson C, Unkefer M, Edwards C, Owen J, Bradley R (2014) Systematics of the Neotoma mexicana species group (Mammalia: Rodentia: Cricetidae) in Mesoamerica: new molecular evidence on the status and relationships of N. ferruginea Tomes, 1862. Proceedings of the Biological Society of Washington 127, 518–532.
Systematics of the Neotoma mexicana species group (Mammalia: Rodentia: Cricetidae) in Mesoamerica: new molecular evidence on the status and relationships of N. ferruginea Tomes, 1862.CrossRef |

Ornelas J, González C (2014) Interglacial genetic diversification of Moussonia deppeana (Gesneriaceae), a hummingbird-pollinated, cloud forest shrub in northern Mesoamerica. Molecular Ecology 23, 4119–4136.
Interglacial genetic diversification of Moussonia deppeana (Gesneriaceae), a hummingbird-pollinated, cloud forest shrub in northern Mesoamerica.CrossRef |

Parenti LR, Ebach MC (2009) ‘Comparative Biogeography: Discovering and Classifying Biogeographical Patterns of a Dynamic Earth.’ (University of California Press: Los Angeles, CA, USA)

Parra-Olea G, García-París M, Wake D (2002) Phylogenetic relationships among the salamanders of the Bolitoglossa macrinii species group (Amphibia: Plethodontidae), with descriptions of two new species from Oaxaca (México). Journal of Herpetology 36, 356–366.
Phylogenetic relationships among the salamanders of the Bolitoglossa macrinii species group (Amphibia: Plethodontidae), with descriptions of two new species from Oaxaca (México).CrossRef |

Parra-Olea G, García-París M, Papenfuss TJ, Wake D (2005) Systematics of the Pseudoeurycea bellii (Caudata: Plethondontidae) species complex. Herpetologica 61, 145–158.
Systematics of the Pseudoeurycea bellii (Caudata: Plethondontidae) species complex.CrossRef |

Parra-Olea G, Rovito S, Márquez-Valdelamar L, Cruz G, Murrieta-Galindo R, Wake D (2010) A new species of Pseudoeurycea from the cloud forest in Veracruz, México. Zootaxa 2725, 57–68.

Rodríguez-Gómez F, Ornelas JF (2015) At the passing gate: past introgression in the process of species formation between Amazilia violiceps and A.viridifrons hummingbirds along the Mexican Transition Zone. Journal of Biogeography 42, 1305–1318.
At the passing gate: past introgression in the process of species formation between Amazilia violiceps and A.viridifrons hummingbirds along the Mexican Transition Zone.CrossRef |

Rosas M, Morrone JJ, Del Río MG, Lanteri AA (2011) Phylogenetic analysis of the Pantomorus-Naupactus complex (Coleoptera: Curculionidae: Entiminae) from North and Central America. Zootaxa 2780, 1–19.

Ruiz E, Rinehart J, Hayes J, Zúñiga G (2010) Historical demography and phylogeography of a specialist beetle, Dendroctonus pseudotsugae Hopkins (Curculionidae: Scolytinae). Environmental Entomology 39, 1685–1697.

Ruiz-Sánchez E, Specht C (2013) Influence of the geological history of the trans-Mexican volcanic belt on the diversfication of Nolina parviflora (Asparagaceae: Nolinoideae). Journal of Biogeography 40, 1336–1347.
Influence of the geological history of the trans-Mexican volcanic belt on the diversfication of Nolina parviflora (Asparagaceae: Nolinoideae).CrossRef |

Sánchez-Sánchez H, López-Barrera G, Peñaloza-Ramírez J, Rocha-Ramírez V, Oyama K (2012) Phylogeography reveals routes of colonization of the bark beetle Dendroctonus approximates Dietz in Mexico. The Journal of Heredity 103, 638–650.
Phylogeography reveals routes of colonization of the bark beetle Dendroctonus approximates Dietz in Mexico.CrossRef |

Suárez-Atilano M, Burbrink F, Vázquez-Domínguez E (2014) Phylogeographical structure within Boa constrictor imperator across the lowlands and mountains of Central America and Mexico. Journal of Biogeography 41, 2371–2384.
Phylogeographical structure within Boa constrictor imperator across the lowlands and mountains of Central America and Mexico.CrossRef |

Vázquez-Miranda H, Navarro-Sigüenza A, Omland K (2009) Phylogeography of the rufous-naped wren (Campylorhynchus rufinucha): speciation and hibridization in Mesoamerica. Auk 126, 765–778.
Phylogeography of the rufous-naped wren (Campylorhynchus rufinucha): speciation and hibridization in Mesoamerica.CrossRef |

Zaldívar-Riverón A, León-Regagnon V, Nieto-Montes de Oca A (2004) Phylogeny of the Mexican coastal leopard frogs of the Rana berlandieri group based on mtDNA sequences. Molecular Phylogenetics and Evolution 30, 38–49.
Phylogeny of the Mexican coastal leopard frogs of the Rana berlandieri group based on mtDNA sequences.CrossRef |



Export Citation Cited By (1)