Supplementary material

Identifying evolutionary lineages in the *Elaeocarpus obovatus* complex: population genetics and morphometric analyses support a new subspecies, *Elaeocarpus obovatus* subsp. *umbratilis*, from northern Queensland, Australia

Yumiko Baba^{A,D}, Maurizio Rossetto^B and Darren M. Crayn^{A,C}

^AAustralian Tropical Herbarium, James Cook University, PO Box 6811,

Cairns, Qld 4870, Australia.

^BNational Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust,

Mrs Macquaries Road, Sydney, NSW 2000, Australia.

^cCentre for Tropical Environmental Sustainability Science, James Cook University,

PO Box 6811, Cairns, Qld 4870, Australia.

^DCorresponding author. Present address: Auckland War Memorial Museum

Tāmaki Paenga Hira, Private Bag 92018, Auckland 1142, New Zealand.

Email: ybaba@aucklandmuseum.com

Table S1. Nuclear microsatellite markers, repeats, sequences and annealing temperature employed in the polymerase chain reaction assays

in this study

Marker	Repeat	5'	3'	Size	Annealing
					temperature (°C)
scu01Eg	(AG)n	CCAAATGAAGAATACCTCCA	AGTGGCTTGGTCAGAGATTA	292-332	56
scu20Eg	(AG)n	TACGCCATCACTGTCTTCACCACC	ACACTCACCATCCTGTGCTCTATCC	144–168	61
scu22Eg	(AG)n	CGCTTCTTACGGTTCTTCTTGAAA	TTCGCTGCTCCCCTGATAA	99–130	61
scu25Eg	(TGG)n	TTTGAGTAGCTCACTCTGCTCTTGG	CGTTGGATTGCCTCCCGATT	282-343	55
scu31Eg	(GA)n(GT)n	GCAAAGCAAGGGCAAGTTCTCTT	CGGCTTCCTAAATTCACTGTATGGA	316-406	61
scu33Eg	(AG)n	GCTTTACACCAAGTAGGAACTACCA	CTAGCTTCTCGGTCGTTATCATTT	287-307	55

Size given in the length excluding the 5'M13 universal primer sequences

Table S2. Error rate for each locus across all the entities

Polymearase chain reaction (PCR) amplification failure is of 181 samples. The numbers in the

Locus	Success number/repeat	Error rate	PCR failure	PCR failure rate	
	samples	(%)		(%)	
scu01Eg	13/13	0	4	2	
scu20Eg	91/93	2	17 (12)	17	
scu22Eg	18/19	5	2	1	
scu25Eg	15/15	0	14 (2)	9	
scu31Eg	95/100	5	6	3	
scu33Eg	107/111	4	13	7	
Total	339/351	3	56 of 1086	5	
			overall samples		

parentheses indicate the numbers of samples that showed more than four peaks

Table S3. Evidence of polyploidy based on allele peak counts of the microsatellites for each locus and POLYSAT ploidy assessment

'-9' indicates missing data. See Table	1 in the main paper f	for the population codes
--	-----------------------	--------------------------

Sample			POLYSAT Allele						
	scu01Eg	scu20Eg	scu22Eg	scu25Eg	scu31Eg	scu33Eg	Max.	Mean	Ploidy
ACO1	2	3	3	2	3	2	3	2.5	3
ACO2	3	3	4	1	3	2	4	2.7	4
ACO3	2	3	3	2	3	2	3	2.5	3
ACO4	3	1	3	-9	2	3	3	2.4	3
ACO5	2	2	2	-9	3	2	3	2.2	3
ALF1	1	1	3	-9	1	3	3	1.8	3
ALF2	2	1	2	-9	4	2	4	2.2	4
ALF3	2	3	4	-9	2	2	4	2.6	4
ALF4	1	1	4	1	2	4	4	2.2	4
ALF5	2	1	2	1	2	4	4	2	4
ALF6	2	1	-9	3	2	3	3	2.2	3
ALF7	2	3	3	3	2	3	3	2.7	3
ALF8	3	2	3	1	3	2	3	2.3	3
ALF9	3	3	2	2	2	4	4	2.7	4
ALF10	2	2	3	1	2	4	4	2.3	4
ALF11	2	2	3	-9	2	2	3	2.2	3
ALF12	3	2	3	2	2	4	4	2.7	4
ALF13	3	1	3	2	4	2	4	2.5	4
ALF14	2	1	2	3	3	3	3	2.3	3
ALF15	2	2	2	2	1	2	2	1.8	2
ALF16	3	2	3	2	2	3	3	2.5	3
ALF17	3	2	3	2	2	4	4	2.7	4
AIR1	3	2	3	2	1	3	3	2.3	3
AIR2	3	2	3	2	1	3	3	2.3	3
AIR3	3	2	3	2	1	3	3	2.3	3
APP1	2	2	2	2	3	3	3	2.3	3
APP2	1	4	2	3	2	4	4	2.7	4
APP3	1	4	3	3	2	2	4	2.5	4
APP4	2	1	2	1	2	4	4	2	4

Austral	ian Systematic Botany	
https://	loi.org/10.1071/SB180	54

Sample			POLYSAT Allele						
	scu01Eg scu20Eg scu22Eg scu25Eg scu31Eg scu33Eg							Mean	Ploid
APP5	1	1	2	3	4	4	4	2.3	4
APP6	2	3	3	2	4	2	3	2.5	3
APP7	2	3	3	2	4	2	3	2.5	3
APP8	1	2	2	3	4	4	4	2.5	4
APP9	3	2	3	2	4	3	3	2.7	3
ANPA1	2	1	2	1	2	3	3	1.8	3
ANPA2	3	2	3	2	3	3	3	2.5	3
ANPA3	3	2	2	1	2	3	3	2	3
ANPA4	1	2	2	2	1	3	3	1.8	3
ANPA5	3	4	2	2	2	3	4	2.7	4
ANPA6	1	2	3	2	3	3	3	2.3	3
ANPA7	2	2	3	2	3	3	3	2.5	3
ANPA8	1	2	2	2	2	3	3	2	3
ANPA9	1	1	3	2	2	3	3	2	3
ANPA10	1	1	1	2	1	1	2	1.2	2
ABS1	2	3	2	1	3	3	3	2.3	3
ABS2	1	3	2	1	3	4	4	2.3	4
ABS3	3	3	2	2	3	1	3	2.3	3
ABS4	1	3	2	2	2	3	3	2.2	3
ABS5	1	_9	3	3	2	3	3	2.2	3
ABS6	3	3	2	3	2	3	3	2.4	3
	3	3	2	2	2	3	1	2.7	1
	4	5	3	2	3	3	4	27	4
	1	4	2	2	2	2	4	2.7	4
	2	4	5	2	5	2	4	27	4
	1	4	4	3	1	2	4	2.7	4
ABDS	4	2	3	2	3	3	4	2.8	4
ABD6	2	2	2	3	3	4	4	2.7	4
ABD7	2	4	2	3	3	4	4	3	4
ABD8	1	3	3	2	2	2	3	2.2	3
AMK1	2	3	3	2	3	2	3	2.5	3
AMK2	-9	2	3	2	2	4	4	2.6	4
AMK3	3	1	2	2	4	4	4	2.7	4
AMK4	3	1	2	2	2	2	3	2	3
AMK5	1	2	3	2	2	2	3	2	3
AMK6	2	3	2	2	1	3	3	2.2	3
AMK7	3	3	3	2	2	4	4	2.8	4
AMK8	1	2	3	2	2	3	3	2.2	3
AMK9	2	3	4	3	3	2	4	2.8	4
AMK10	1	2	4	2	4	3	4	2.7	4
AMK11	2	2	4	2	1	3	4	2.3	4
AMK12	1	2	2	2	2	4	4	2.2	4
AMK13	3	2	3	2	2	3	3	2.5	3
AMK14	2	2	4	2	2	2	4	2.3	4
AMK15	1	3	4	2	2	3	4	2.5	4
AMK16	1	4	3	4	2	2	4	2.7	4
AMK17	1	2	3	1	3	2	3	2	3
AMK18	2	3	3	2	4	3	4	2.8	4
AMK19	1	2	1	3	3	2	3	2	3
AMK20	2	3	3	3	3	2	3	2.7	3
ALL1	3	2	3	3	3	3	3	2.8	3
ALL2	1	3	2	2	3	4	4	2.5	4
ALL3	1	3	2	2	3	2	3	2.5	י ז
ALL 4	2	3	2 2	2	2 2	2	3	2.5	2
	2	2	2	∠ 1	2	ے 0	2	2.2	2
	ے 1	Л	3 2	1	2	-7	Л	2.2	с л
	1	4	2	1	2	3 2	4	2.2	4
	1	5	2	2	2	3	5	2.2	5
	2	2	2	2	5	2	3	2.2	5
NMK2	2	1	2	1	2	3	. 5	1.8	

Australia	n Systematic Botany
https://doi	.org/10.1071/SB18054

Sample			POLYSAT Allele						
	scu01Eg	scu20Eg	scu22Eg	scu25Eg	scu31Eg	scu33Eg	Max.	Mean	Ploidy
AMR3	3	2	3	3	2	2	3	2.5	3
AMR4	2	2	3	2	4	2	4	2.5	4
AMR5	2	2	4	1	3	3	4	2.5	4
ANT1	2	2	3	1	3	3	3	2.3	3
ANT2	1	2	3	1	1	2	3	1.7	3
ATS1	2	2	3	2	3	4	4	2.7	4
OUC1	2	3	1	1	2	2	3	1.8	3
OUC2	1	2	1	1	1	2	2	1.3	2
OUC3	1	2	1	1	1	2	2	1.3	2
OUC4	2	3	1	1	1	1	3	1.5	3
OUC5	1	4	1	1	2	1	4	1.7	4
OUC6	2	4	2	1	1	1	4	1.8	4
OUC7	-9	4	-9	-9	1	2	4	2.3	4
OUC8	1	3	2	1	1	2	3	1.7	3
OUC9	1	4	2	1	1	2	4	1.8	4
OTVE1	2	3	2	1	1	2	3	1.8	3
OTVE2	1	4	1	1	2	1	4	1.7	4
OMA1	1	3	1	2	1	1	3	1.5	3
OMA2	- 1	4	2	- 1	2	1	4	1.8	4
OMA3	1	4	2	1	-2	1	4	1.8	4
OMA4	1	3	3	2	4	1	4	2.3	4
OMA5	1	_9	1	1	3	1	3	14	3
OPR 1	1	4	2	2	2	2	4	2.2	4
OPR2	2	4	2	2	2	2	4	2.2	4
OPR3	1	+ 1	1	1	1	1	4	1.5	4
OPR 4	1	4	1	1	1	1	4	1.5	-4 2A
OPP5	1	-9	2	1	2	1	1	16	2
OPP1	1	-9	2	1	2	2	2 4	2.2	2 1
OBR1	4	4	4	4	2	2	4	5.5 2	4
ODR2	2	-9	4	1	2	1	4	2 1.4	4
OBR3	1	-9	2	1	2	1	2	1.4	2
OBR4	2 2	-9	5	2	1	1	3	2	3
OBR5	2 2	4	1	2	2	2	4	2.5	4
OBK0	3	-9	3	2	2	1	3	2.2	3
OMCI	3	4	4	1	2	3	4	2.8	4
OMC2	3	4	4	1	3	2	4	2.8	4
OMC3	3	4	3	3	3	3	4	3.2	4
OMC4	2	_9	3	3	3	2	3	2.6	3
OMC5	2	_9	4	2	3	3	4	2.8	4
OML1	3	4	3	2	1	3	4	2.7	4
OML2	3	-9	4	_9	2	3	4	3	4
OML3	4	4	3	2	4	2	4	3.2	4
OML4	3	-9	4	2	3	3	4	3	4
OMtB1	3	3	3	-9	2	3	3	2.8	3
OMtB2	4	4	4	3	3	3	4	3.5	4
OMtB3	4	4	4	3	2	4	4	3.5	4
OMtB4	4	3	4	3	1	3	4	3	4
OMtB5	4	4	4	3	2	3	4	3.3	4
OMtB6	4	4	4	3	2	3	4	3.3	4
OMtB7	4	-9	3	1	3	2	4	2.6	4
OMtB8	4	4	4	3	1	2	4	3	4
OMB1	2	3	2	2	3	3	3	2.5	3
OMB2	3	-9	3	3	1	3	3	2.6	3
OMB3	4	4	4	1	3	1	4	2.8	4
OMB4	3	-9	2	2	1	2	3	2	3
OBB1	2	2	3	2	1	-9	3	2	3
OBB2	3	-9	4	1	3	1	4	2.4	4
OBB3	3	-9	-9	1	4	1	4	2.3	4
OBB4	2	-9	3	2	2	1	3	2	3

Australian Systematic Botany	
https://doi.org/10.1071/SB18054	ŀ

Sample	Manual allele count POLYSAT									
			Lo	cus				Allele		
	scu01Eg	scu20Eg	scu22Eg	scu25Eg	scu31Eg	scu33Eg	Max.	Mean	Ploidy	
OBH1	2	4	2	2	2	-9	4	2.4	4	
OBH2	1	1	3	1	1	-9	3	1.4	3	
OBH3	2	-9	3	2	1	-9	3	2	3	
OBH4	3	-9	4	1	2	-9	4	2.5	4	
OBH5	2	9	3	2	2	1	3	2	3	
BCL1	2	2	2	2	2	1	2	1.8	2	
BCL2	1	1	2	2	2	1	2	1.5	2	
BCL3	1	2	2	1	2	1	2	1.5	2	
BCL4	1	1	2	1	2	1	2	1.3	2	
BPR1	1	1	2	1	2	1	2	1.3	2	
BPR2	2	1	2	2	2	1	2	1.7	2	
BPR3	2	1	2	2	2	1	2	1.7	2	
BPR4	2	-9	2	-9	2	1	2	1.8	2	
BPR5	1	-9	2	1	2	1	2	1.4	2	
BWT1	-9	3	1	-9	-9	-9	3	2	3	
BWT2	2	3	2	1	1	1	3	1.7	3	
BWT3	1	4	2	3	2	1	4	2.2	4	
BWT4	2	-9	1	-9	2	-9	2	1.7	2	
BWT5	1	-9	2	2	2	1	2	1.6	2	
BMtL1	2	2	2	1	1	2	2	1.7	2	
BMtL2	1	1	2	1	2	1	2	1.3	2	
BMtL3	1	1	2	1	1	1	2	1.2	2	
BMtL4	1	-9	2	-9	2	-9	2	1.7	2	
BTR1	1	-9	1	1	2	-9	2	1.3	2	
BTR2	1	-9	2	1	1	1	2	1.2	2	
BTR3	1	-9	2	-9	2	1	2	1.5	2	
BTR4	1	-9	2	-9	2	1	2	1.5	2	
BTR5	-9	-9	2	-9	1	1	2	1.3	2	
BDC1	1	2	2	2	2	1	2	1.7	2	
BDC2	1	1	2	2	2	2	2	1.7	2	
BDC3	2	1	2	1	2	1	2	1.5	2	
ADC1	2	1	2	1	1	1	2	1.3	2	
ADC2	2	2	1	2	-9	2	2	1.8	2	
ADC3	1	1	1	2	1	1	2	1.2	2	
COO1	2	3	3	1	-9	-9	3	2.3	3	
COO2	2	1	2	2	-9	2	2	1.8	2	

^AManipulated to adjust to the minimum ploidy level of two.

Table S4. Characteristics of the six nuclear microsatellite loci used in this study for *Elaeocarpus arnhemicus*, *E. obovatus* and *E.* sp. Mt Bellenden Ker

Results for E. coorangooloo, ADC and BDC are not shown, because samples sizes are smaller than five. s.d., standard deviation. N, sample size; S, range of

allele sizes (bp); uA₁, unbiased mean number of alleles per locus (mean number of alleles per locus A₁, averaged by the number of samples in the population,

N; uA_R , unbiased mean number of unique alleles per locus (mean number of unique alleles per locus A_R , averaged by the number of samples in the

population, <i>N</i>); $P \ge 2A$, proportion of individuals with two or	r more alleles per locus; R, range of alleles per individual
--	--

Locus	E. arnhemicus						E. obovatus					E. sp. Mt Bellenden Ker			
	Ν	S	$uA_I (P \ge 2A)$	uA_R	R	Ν	S	$uA_I (P \ge 2A)$	uA_R	R	Ν	S	$uA_I (P \ge 2A)$	uA_R	R
scu01Eg	92	314–335	2.0 (0.67)	8	1–4	56	310-341	2.3 (0.70)	11	1–4	21	316-335	1.3 (0.33)	5	1–2
scu20Eg	92	160–184	2.3 (0.83)	12	1–4	37	160–186	2.4 (0.97)	13	1–4	13	164–172	1.7 (0.46 ^A)	6	1–3 ^A
scu22Eg	92	120–144	2.7 (0.98)	13	1–4	55	116–148	2.6 (0.80)	15	1–4	23	128–136	2.5 (0.82)	6	1–2
scu25Eg	87	300-340	2.2 (0.80)	9	1–4	54	300–343	1.7 (0.52)	7	1–4	16	300–340	1.6 (0.38 ^A)	6	1–3 ^A
scu31Eg	93	372–390	2.5 (0.88)	7	1–4	57	374–420	2.0 (0.65)	15	1–4	22	372–424	2.0 (0.77)	9	1–2
scu33Eg	92	305-325	2.8 (0.98)	9	1–4	52	309-325	1.9 (0.62)	7	1–4	19	319-325	1.1 (0.05)	3	1
Total	93	_	2.4 (s.d. =	58	_	57	_	2.2 (s.d. =	68		23	_	1.7 (s.d. =	35	_
			0.31) (0.86;					0.34) (0.71;					0.50) (0.47;		
			s.d. = 0.12)					s.d. = 0.16)					s.d. = 0.29)		

^AThree alleles were found in individuals from BWT at *scu20Eg* & *scu25Eg*.