Register      Login
Sexual Health Sexual Health Society
Publishing on sexual health from the widest perspective
RESEARCH ARTICLE

The influence of target population on nonculture-based detection of markers of Neisseria gonorrhoeae antimicrobial resistance

Namraj Goire A B G , Kevin Freeman C , Stephen B. Lambert A B , Graeme R. Nimmo E F , Athena E. Limnios D , Monica M. Lahra D , Michael D. Nissen A B E , Theo P. Sloots A B E and David M. Whiley A B
+ Author Affiliations
- Author Affiliations

A Queensland Paediatric Infectious Diseases Laboratory, Queensland Children’s Medical Research Institute, Children’s Health Service District, Brisbane 4029, Qld, Australia.

B Clinical Medical Virology Centre, Sir Albert Sakzewski Virus Research Centre, University of Queensland, Brisbane 4029, Qld, Australia.

C Microbiology Laboratory, Pathology Department, Royal Darwin Hospital, Darwin, NT 0811, Australia.

D World Health Organisation Collaborating Centre for STD, Microbiology Department, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW 2031, Australia.

E Microbiology Division, Pathology Queensland Central, Royal Brisbane and Women’s Hospital Campus, Brisbane 4029, Qld, Australia.

F Griffith University School of Medicine, Gold Coast, Qld 4222, Australia.

G Corresponding author. Email: namraj.goire@uqconnect.edu.au

Sexual Health 9(5) 422-429 https://doi.org/10.1071/SH12026
Submitted: 8 March 2012  Accepted: 7 May 2012   Published: 5 October 2012

Abstract

Background: With treatment options for gonorrhoea (Neisseria gonorrhoeae) diminishing, strengthening antimicrobial resistance (AMR) surveillance is paramount. Methods: In this study, we investigated polymerase chain reaction (PCR) based methods, in parallel with N. gonorrhoeae multi-antigen sequence typing (NG-MAST), for direct detection of four N. gonorrhoeae chromosomal mechanisms associated with emerging resistance to extended spectrum cephalosporins using noncultured samples: an adenine deletion in the mtrR promoter, a mosaic penicillin-binding protein (PBP) 2, an A501V PBP2 mutation, and alterations at positions 120 and 121 of the porB protein. The PCR assays were validated using a panel of characterised N. gonorrhoeae isolates (n = 107) and commensal Neisseria (n = 100) species. These PCR assays with NG-MAST were then applied to noncultured clinical specimens from distinct populations in Australia with differing levels of N. gonorrhoeae AMR: the Northern Territory (NT), where resistance has a low population prevalence, and Queensland (Qld), with higher AMR prevalence. Results: The real-time PCR assays proved highly sensitive and specific. When applied to the noncultured samples, only 1 out of 50 (2%) samples from NT harboured a resistant mechanism, whereas the Qld samples (n = 129) collected over different periods showed progressive acquisition of resistant mechanisms, and these were associated with specific NG-MAST types, including Type 225. Conclusions: The results suggest that our PCR-based methods could be used to rapidly pinpoint incursion of resistant strains into previously unaffected populations. Likewise, our results show that for molecular AMR surveillance, the population being investigated is as important as the genetic mechanisms being targeted.

Additional keywords: Australia, cephalosporin, gonorrhoea, penicillin, polymerase chain reaction.


References

[1]  Tapsall JW. Neisseria gonorrhoeae and emerging resistance to extended spectrum cephalosporins. Curr Opin Infect Dis 2009; 22 87–91.
Neisseria gonorrhoeae and emerging resistance to extended spectrum cephalosporins.Crossref | GoogleScholarGoogle Scholar |

[2]  Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, et al Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 2011; 55 3538–45.
Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Ortbc%3D&md5=41cd26f534378711e3f8ef8e4ad0d5f2CAS |

[3]  Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in Europe (France): novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2011; 56 1273–80.

[4]  Dillon JA. Sustainable antimicrobial surveillance programs essential for controlling Neisseria gonorrhoeae superbug. Sex Transm Dis 2011; 38 899–901.
Sustainable antimicrobial surveillance programs essential for controlling Neisseria gonorrhoeae superbug.Crossref | GoogleScholarGoogle Scholar |

[5]  Australian Gonococcal Surveillance Programme. Annual report of the Australian Gonococcal Surveillance Programme 2010. Commun Dis Intell 2010; 2 89–95.

[6]  Martin I, Jayaraman G, Wong T, Liu G, Gilmour M, Canadian Public Health Laboratory Network. Trends in antimicrobial resistance in Neisseria gonorrhoeae isolated in Canada: 2000–2009. Sex Transm Dis 2011; 38 892–8.
Trends in antimicrobial resistance in Neisseria gonorrhoeae isolated in Canada: 2000–2009.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2is73K&md5=6f35eb955782d6a86bd4ddc358d8ef54CAS |

[7]  Liao M, Gu WM, Yang Y, Dillon JA. Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone. J Antimicrob Chemother 2011; 66 1016–23.
Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFejsbg%3D&md5=c44dd601b1947f5e2701c982e4fa06a3CAS |

[8]  Takahata S, Senju N, Osaki Y, Yoshida T, Ida T. Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2006; 50 3638–45.
Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOkt7vE&md5=bf2a71c162dc27279a5662f2d486d25bCAS |

[9]  Chisholm SA, Mouton JW, Lewis DA, Nichols T, Ison CA, Livermore DM. Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J Antimicrob Chemother 2010; 65 2141–8.
Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFylsbvL&md5=e7964475be3a8101cf6aa207d28bedcdCAS |

[10]  Golparian D, Hellmark B, Fredlund H, Unemo M. Emergence, spread and characteristics of Neisseria gonorrhoeae isolates with in vitro decreased susceptibility and resistance to extended-spectrum cephalosporins in Sweden. Sex Transm Infect 2010; 86 454–60.
Emergence, spread and characteristics of Neisseria gonorrhoeae isolates with in vitro decreased susceptibility and resistance to extended-spectrum cephalosporins in Sweden.Crossref | GoogleScholarGoogle Scholar |

[11]  Lindberg R, Fredlund H, Nicholas R, Unemo M. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob Agents Chemother 2007; 51 2117–22.
Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKrsLk%3D&md5=e8927ca48aeafcc9f2ea92efec98b0ceCAS |

[12]  Zhao S, Duncan M, Tomberg J, Davies C, Unemo M, Nicholas RA. Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2009; 53 3744–51.
Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjsr%2FN&md5=cef86e89ecfe784627dd449c73c4f8c6CAS |

[13]  Ito M, Deguchi T, Mizutani KS, Yasuda M, Yokoi S, Ito S, et al Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan. Antimicrob Agents Chemother 2005; 49 137–43.
Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVSjtw%3D%3D&md5=2cb2209fcdf93d7521a188b7e97e15e7CAS |

[14]  Whiley DM, Limnios EA, Ray S, Sloots TP, Tapsall JW. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob Agents Chemother 2007; 51 3111–6.
Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVais73I&md5=8363bd274c833211f82fd35169c320c2CAS |

[15]  Ohnishi M, Watanabe Y, Ono E, Takahashi C, Oya H, Kuroki T, et al Spread of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob Agents Chemother 2010; 54 1060–7.
Spread of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWqs7w%3D&md5=7a870409c9cc410351b17f982559a344CAS |

[16]  Tomberg J, Unemo M, Davies C, Nicholas RA. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 2010; 37 8062–70.

[17]  Tapsall JW, Ray S, Limnios A. Characteristics and population dynamics of mosaic penA allele-containing Neisseria gonorrhoeae isolates collected in Sydney, Australia, in 2007–2008. Antimicrob Agents Chemother 2010; 54 554–6.
Characteristics and population dynamics of mosaic penA allele-containing Neisseria gonorrhoeae isolates collected in Sydney, Australia, in 2007–2008.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Sht7w%3D&md5=7769d870e52465b049fd58d4191efd56CAS |

[18]  Lee SG, Lee H, Jeong SH, Yong D, Chung GT, Lee YS, et al Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J Antimicrob Chemother 2010; 65 669–75.
Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Oisb0%3D&md5=e0631b3927516e4e9298cd230cb2b71cCAS |

[19]  Goire N, Freeman K, Tapsall JW, Lambert SB, Nissen MD, Sloots TP, et al Enhancing gonococcal antimicrobial resistance surveillance: a real-time PCR assay for detection of penicillinase-producing Neisseria gonorrhoeae by use of noncultured clinical samples. J Clin Microbiol 2011; 49 513–8.
Enhancing gonococcal antimicrobial resistance surveillance: a real-time PCR assay for detection of penicillinase-producing Neisseria gonorrhoeae by use of noncultured clinical samples.Crossref | GoogleScholarGoogle Scholar |

[20]  Kugelman G, Tapsall JW, Goire N, Syrmis MW, Limnios A, Lambert SB, et al Simple, rapid, and inexpensive detection of Neisseria gonorrhoeae resistance mechanisms using heat-denatured isolates and SYBR green-based real-time PCR. Antimicrob Agents Chemother 2009; 53 4211–6.
Simple, rapid, and inexpensive detection of Neisseria gonorrhoeae resistance mechanisms using heat-denatured isolates and SYBR green-based real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kkur3N&md5=45e3eb0e8b4a190680b1c87107b0bf10CAS |

[21]  Goire N, Nissen MD, LeCornec GM, Sloots TP, Whiley DM. A duplex Neisseria gonorrhoeae real-time polymerase chain reaction assay targeting the gonococcal porA pseudogene and multicopy opa genes. Diagn Microbiol Infect Dis 2008; 61 6–12.
A duplex Neisseria gonorrhoeae real-time polymerase chain reaction assay targeting the gonococcal porA pseudogene and multicopy opa genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFGjsbw%3D&md5=b43971c306588b899c15b98df795ab0cCAS |

[22]  Ochiai S, Ishiko H, Yasuda M, Deguchi T. Rapid detection of the mosaic structure of the Neisseria gonorrhoeae penA gene, which is associated with decreased susceptibilities to oral cephalosporins. J Clin Microbiol 2008; 46 1804–10.
Rapid detection of the mosaic structure of the Neisseria gonorrhoeae penA gene, which is associated with decreased susceptibilities to oral cephalosporins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvV2mtL8%3D&md5=c1383cb39b7f90c1705a1c3bedee7e33CAS |

[23]  Whiley DM, Goire N, Ray ES, Limnios A, Lambert SB, Nissen MD, et al Neisseria gonorrhoeae multi-antigen sequence typing using non-cultured clinical specimens. Sex Transm Infect 2010; 86 51–5.
Neisseria gonorrhoeae multi-antigen sequence typing using non-cultured clinical specimens.Crossref | GoogleScholarGoogle Scholar |

[24]  Palmer HM, Young H, Graham C, Dave J. Prediction of antibiotic resistance using Neisseria gonorrhoeae multi-antigen sequence typing. Sex Transm Infect 2008; 84 280–4.
Prediction of antibiotic resistance using Neisseria gonorrhoeae multi-antigen sequence typing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cvmslygtg%3D%3D&md5=385c1c6a8dae28b175f0996cd36012d6CAS |

[25]  Australian Gonococcal Surveillance Programme. Annual report of the Australian Gonococcal Surveillance Programme 2003. Commun Dis Intell 2004; 28 187–93.

[26]  Australian Gonococcal Surveillance Programme. Annual report of the Australian Gonococcal Surveillance Programme 2007. Commun Dis Intell 2008; 32 227–31.

[27]  Monfort L, Caro V, Devaux Z, Delannoy AS, Brisse S, Sednaoui P. First Neisseria gonorrhoeae genotyping analysis in France: identification of a strain cluster with reduced susceptibility to ceftriaxone. J Clin Microbiol 2009; 47 3540–5.
First Neisseria gonorrhoeae genotyping analysis in France: identification of a strain cluster with reduced susceptibility to ceftriaxone.Crossref | GoogleScholarGoogle Scholar |

[28]  Mavroidi A, Tzelepi E, Siatravani E, Godoy D, Miriagou V, Spratt BG. Analysis of emergence of quinolone-resistant gonococci in Greece by combined use of Neisseria gonorrhoeae multiantigen sequence typing and multilocus sequence typing. J Clin Microbiol 2011; 49 1196–1201.
Analysis of emergence of quinolone-resistant gonococci in Greece by combined use of Neisseria gonorrhoeae multiantigen sequence typing and multilocus sequence typing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrt7zJ&md5=6bf57ea40be69e9ff66045b5cb71f2a4CAS |

[29]  Ferreira WA, Ferreira CM, Naveca FG, Almeida NC, Vasconcelos WDS, Gomes JDS, et al Genotyping of two Neisseria gonorrhoeae fluroquinolone-resistant strains in the Brazilian Amazon region. Mem Inst Oswaldo Cruz 2011; 5 629–31.

[30]  Goire N, Ohnishi M, Limnios AE, Lahra MM, Lambert SB, Nimmo GR, et al Enhanced gonococcal antimicrobial surveillance in the era of ceftriaxone resistance: a real-time PCR assay for direct detection of the Neisseria gonorrhoeae H041 strain. J Antimicrob Chemother 2011; 67 902–905.