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Abstract. Mathematical transmission models are widely used to forecast the potential impact of interventions such
as vaccination and to inform the development of health policy. Effective vaccines are now available for the prevention
of cervical cancer and other diseases attributable to human papillomavirus (HPV). Considerable uncertainties remain
regarding the characterisation of HPV infection and its sequelae, infectivity, and both vaccine-conferred and naturally-
acquired immunity. In this review, we discuss the key knowledge gaps that impact on our ability to develop accurate
models of HPV transmission and vaccination.
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Introduction

Two prophylactic vaccines are currently available to provide
protection against the most important human papillomavirus
(HPV) types. Clinical trials have demonstrated that these
vaccines are safe and highly effective at preventing infection
and precancerous lesions caused by the vaccine HPV types, and
that they provide a degree of cross-protection against certain
related non-vaccine types.1–4 Several therapeutic vaccines are
also under development.5 With the advent of effective vaccines
for the prevention of disease caused by HPV, mathematical
models have been widely used to estimate the potential health
and economic benefits of HPV vaccination, with the aim of
developing evidence-based health policy.6–9

Because HPV is a transmissible infection, transmission
models are necessary to capture the full impact that
vaccination will have in reducing the burden of disease in the
population. In particular, transmission models are required to
capture the herd immunity benefits of vaccination. In this
context, herd immunity refers to the indirect protection
afforded to unvaccinated susceptible individuals (those who
have not acquired immunity through prior exposure to
infection) as a consequence of reduced exposure to infection,
because a proportion of the population have acquired immunity
through vaccination or prior exposure to infection.10 In general,
the prevalence of infection in the population will change with
time as vaccination is introduced and thus an individual’s risk of
exposure to infection will also change with time. Therefore, in
order to predict the impact of vaccination at a population level,
we must use dynamic models of transmission that are able to
capture these dynamic processes.8,11–14

The key element of all transmission models is the transmission
event that can occur when there is contact between an infected
and a susceptible individual. The probability that transmission
will occur depends on the degree of infectiousness and
susceptibility of these individuals, and the effect that vaccination
has on both of these properties. In this review, we discuss the
knowledgegapsconcerningHPVinfectionand transmission, in the
context of vaccination, from the point of view of developing
accurate transmission models.

Overview of transmission modelling

An understanding of the basic reproduction number (R0)
12–14 is

often useful for a structured discussion of key uncertainties. The
basic reproduction number is the number of secondary infections
resulting, on average, from the introduction of a typical primary
infective (index case) to a totally infection-naive population.
A simple model for R0 is:

R0 ¼ bcd ð1Þ
where b is the per-contact transmission probability, c is the
frequency of contact and d is the duration of infection.11,15

Because HPV is an endemic pathogen for which vaccines are
available, R0 tells only part of the story; it is also necessary
to consider who is wholly or partially immune. Even so, this
simple model for R0 has the important implication that relative
uncertainties in each of these three quantities (b, c, d) contribute
similarly to the overall uncertainty in the model conclusions.
Formally, if DR0, Db, Dc and Dd represent the uncertainty in
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these quantities, applying simple calculus to Eqn 1 gives the
relation:

DR0=R0 ¼ Db=bþ Dc=cþ Dd=d: ð2Þ

In this section and Table 1, we show that quantities affecting
c have been measured most precisely, that there is more
uncertainty in d and that b is very poorly known.

A model of sexual contact (represented in Eqn 1 by a single
parameter c) is central to every HPV transmission model.
Contact may be expressed in terms of partnerships or sexual
acts. Because the burden of disease is predominantly among
females who are at risk from infection obtained through
heterosexual intercourse, the emphasis in HPV transmission
models is usually given to heterosexual vaginal intercourse.
However, the burden of disease is significant amongst men
who have sex with men (MSM)16 and, to our knowledge, the
transmission of HPV from MSM to females has not been
explicitly studied.

We have listed some estimates of important values, with their
associated uncertainties, in Table 1. While these parameters are
not themselves a complete model of sexual mixing and require
interpretation, they very closely reflect a frequency of contact
(i.e. c). Parameters such as these have been measured from
large, population-based surveys for the Australian population
and others,17–20 and have relatively high precision. If full use
were made of these datasets, uncertainties in sexual contact
models would make a relatively small contribution to the overall
uncertainty in most model conclusions.

Durations of HPV infection, as determined by polymerase
chain reaction (PCR)-detected DNA positivity, have been
carefully measured, in both men and women, for types 6 and
16 in particular, and, to a lesser extent, for types 11 and 18
(e.g.21–23). The coefficient of variation for the duration of
infection of HPV-16 reported by Trottier et al.23 is 8.1%, so
these values are no longer key uncertainties. What is not clear, as
will be discussed below, is that these durations of infection
correspond to durations of infectiousness.

The per-act probability of transmission, b, is important for
transmission models but is difficult to measure by direct
experiment because it requires the identification of pairs of
individuals where one partner is susceptible and the other
infectious, and observing the outcome of sexual activity. A few
studies have made interesting preliminary observations,24–26 but
with insufficient detail, power and temporal resolution to measure
b precisely. The coefficient of variation in b is unknown.

The uncertainty in c contributes least to the overall
uncertainty of the model, and the uncertainty in d is also
modest. Any remaining difficulties are in interpreting values
that have been carefully measured. The lack of knowledge
concerning b dominates any uncertainty in c or d.

Measuring infectiousness

For the foreseeable future, comparing modelling results with
epidemiological data will be an important task of mathematical
modellers. Such comparison will allow improved inference of
all parameters, and will continue to have the greatest impact on
the parameters with the greatest uncertainty. To support this
comparison and inference process, it is necessary to know who
may transmit HPV, and as much as possible about their
infectiousness.

How do we interpret DNA positivity?

Several technologies have been developed for detection,
genotyping and viral-load quantification of HPV
infection.27–32 These methodologies, which generally involve
detection of HPV nucleic acid (DNA, mRNA) in samples taken
from the genital tract or tissue biopsies, have been applied
primarily in determining the clinical and prognostic outcomes
of HPV infection, and in epidemiological studies of HPV
incidence and prevalence, distribution and natural history.
However, to our knowledge, none of these technologies has
been studied or validated for determining the infectiousness
or transmissibility of infections. Infectiousness may depend on
HPV viral load and this, in turn, may depend on the stage of
infection. It has been suggested that the detection of mRNAmay
be a better indicator of a productive viral infection, and several
studies have been conducted to investigate the prognostic value
of this test33–39 but as yet, no large-scale study has been
conducted to establish a correlation between the presence of
mRNA transcripts or viral load with transmissibility.

PCR DNA tests have been the most widely used in
epidemiological studies for the detection of HPV infection.
However, it is implausible to denote all people who yield a
positive result to this test as being equally infectious. The
problem arises when attempting to reconcile population-based
epidemiological studies of HPV prevalence with a mathematical
model: on one hand, it is easiest to use simple classifications in
a model (such as ‘susceptible’, ‘infectious’ or ‘recovered’), but
on the other hand, there is no empirical test for dividing the
population into these classes. Most mathematical models do not

Table 1. Estimates for six values reflecting the frequency of contact (c) and the duration of infection (d ) from large, representative studies
The right-hand column, variability, is a coarse measure of the precision of the empirical estimate and was obtained by dividing one-quarter of the 95%

confidence interval (CI) by the estimate itself

Parameter Source Estimate 95% CI Variability (%)

Number of partners past year (males) De Visser et al.17 1.5 1.3–1.7 6.7
Number of partners past 5 years (males) De Visser et al.17 3.9 3.5–4.2 4.5
Number of partners past year (females) De Visser et al.17 1.0 1.0–1.1 2.5
Number of partners past 5 years (females) De Visser et al.17 1.9 1.8–2.1 3.9
HPV-16 clearance (per 1000 months) Trottier et al.23 82.4 70.2–96.8 8.1
HPV-18 clearance (per 1000 months) Trottier et al.23 91.9 68.8–122.7 14.7

Unresolved questions on HPV transmission Sexual Health 369



adequately address this issue. A simple calculation illustrates
how difficult it is to interpret DNA-based population surveys
for HPV. For example, Peto et al.40 reported a mean HPV-16
prevalence of 3.3% for women aged 15–69 and Trottier et al.23

reported a mean HPV-16 prevalence of 2.7% for women aged
18–60. Consider the following calculation, which illustrates
how simple interpretations of DNA positivity and immunity
cannot be reconciled with epidemiological data. Assume that
infection occurs at most once and clears with a mean duration of
11 months.23 Assuming further that the DNA surveys were
conducted under equilibrium conditions (i.e. HPV prevalence is
not changing temporally), the proportion of women infected
(pinf) during the survey’s age-range (w) is given by:

pinf ¼ pw=d; ð3Þ
where p is the mean prevalence measured over the age-range w
and d is the duration of infection. For the Peto and Trottier
studies,23,40 this calculation suggests that the proportion of
women infected during their lifetime is 1.98 and 1.27,
respectively; in either case, this corresponds to a lifetime risk
of infection that exceeds the maximum possible value of 1.

A few different solutions to this problem are possible. The
assumption of equilibrium is questionable, and in summary, it is
possible that HPV-16 incidence and prevalence are higher
now than they ever have been or will be in the future, and
that this makes it difficult to decide how to use age-dependent
epidemiological data. The model of infection implied by Eqn 3
is also simplistic. If the observed overall prevalence includes
either re-infections or persistent infections, prevalence cannot
be transformed into a lifetime risk of infection by the simple
calculation given above. The Trottier study23 reported a
difference in the duration of prevalent and incident infections
of 8.2 months and 7.1 months, respectively, when averaged
across all HPV types, but this 15% difference is not great enough
to explain the discrepancy illustrated in the calculation above.

This argument illustrates that the assumptions underlying
Eqn 3 are inconsistent. However, as it seems improbable that
even most women are infected with HPV-16, a few simple
changes to the model or the estimates will not resolve this
problem. We believe that a much more complex model of
infection, incorporating ideas such as persistence, viral load,
reactivation and re-infection, together with a sophisticated model
of immunity, will be required to explain survey data. Only some
DNA-positive individuals will be typically infectious, while
others may have low or effectively zero infectivity.

Measuring immunity

How do we interpret HPV seropositivity?

For the modeller, it would be simplest to assume that HPV
infection leads to seroconversion in every individual and that
seropositivity is maintained for the individual’s lifetime. Under
this assumption, and also assuming that sexual behaviour is not
changing over time, we would expect seropositivity, as obtained
from serosurveys, to increase monotonically with age; however,
this is not the case.41,42

First, only ~50–75% of individuals who have been infected
mount a serologically detectable response28,42 with the
sensitivity of current tests. The implication of this observation

for modelling is that it may not be reasonable to assume that all
those who have recovered from infection are equally protected
against further challenge. This is discussed in more detail below.
Second, women older than 50 years are less often seropositive
than women aged 30–50 (e.g.41,43). As most models are built
with the intention of modelling the transmission of HPV in the
most sexually active groups, a modeller may choose to ignore
this observation on the basis that the older cohorts were less
sexually active in their youth (e.g.44) and therefore their
seroprevalence cannot be used to assess the correctness of a
current model of transmission.

Does naturally acquired infection confer immunity
to re-infection?

HPV is adept at evading the immune system, but most anogenital
and cutaneous lesions resolve spontaneously as a result of a
successful cell-mediated immune response.42 When immunity is
impaired, e.g. in organ transplant recipients and those infected
with HIV, clearance of HPV is hindered and rates of HPV-
related cancers are higher.45–48 Although seroconversion does
occur in some individuals following natural infection, antibody
concentrations are low. However, it has been shown that
previously infected animals remain resistant to infection when
challenged with high doses of virus of the same type, even in the
absence of detectable antibodies.49 In humans, it appears to be
uncommon for re-infection to occur with the same type as has
previously been resolved.48 There is, therefore, considerable
evidence to support the notion of naturally acquired immunity to
re-infection. Because we currently have no immune correlate of
protection (i.e. no measurable indicator that a person is immune),
it is difficult to determine the duration of naturally acquired
immunity. From a modelling perspective, the assumed duration
of naturally acquired immunity is an important parameter
(e.g.50). In particular, the impact on transmission will be most
significant if naturally acquired immunity is assumed to wane
while individuals remain sexually active.

Some modelling studies have assumed that infection with
HPV confers no protection against subsequent infection
(e.g.51–53). Others (e.g.54,55) have assumed lifelong (type-
specific) immunity following infection on the basis of
observations detailed above and because age-specific
population prevalence tends to peak fairly quickly following
the commencement of sexual activity and fall sharply after the
age of ~25 (e.g.40). It should be noted that most prevalence
studies have been conducted in female populations and it is not
clear the extent to which the age-specific prevalence profile for
men mirrors that for women.56 Yet other studies have compared
scenarios in which naturally acquired immunity is either lifelong
or of finite duration (e.g.57), or have allowed the rate at which
immunity wanes to vary over a given range (e.g.50). To illustrate
the importance of this assumption, the model of Regan et al.57

predicts that the relative reduction in incidence of HPV infection
due to mass vaccination is considerably higher when it is
assumed that naturally acquired immunity is of 10 years
duration than when it is assumed to be lifelong; the model of
Jit et al.50 finds that the assumed duration of naturally acquired
immunity is second in importance only to the duration of
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vaccine-conferred immunity in the estimation of the cost-
effectiveness of vaccination.

How effective are the current vaccines
at preventing infection?

Clinical trials for the two currently licensed HPV vaccines
have demonstrated very high efficacy for preventing persistent
infection and precancerous anogenital lesions caused by infection
with HPV types 16 and 18; in the case of the quadrivalent vaccine,
high efficacy has also been demonstrated for the prevention of
genital warts due to HPV types 6 and 11.5 Evidence of a degree of
cross-protective efficacy against related HPV types has also been
demonstrated for both vaccines.2,58 However, from a transmission
modelling point of view, we are primarily concerned with the
effect vaccination will have on the acquisition and transmission
of infection. Evidence from the clinical trials strongly suggests
that vaccinated individuals may be transiently infected and thus
may also be infectious (e.g.59,60). For example, Gardasil®

(quadrivalent HPV vaccine; Merck, NJ, USA) demonstrated
90.4% efficacy against external genital lesions and 85.6%
efficacy against persistent infection, but only 44.7% efficacy
against DNA detection in the per-protocol population of the trial
in males.59 The problem for the modeller is how to interpret
these findings, and make appropriate assumptions regarding
the infectiousness of both the apparent transient infections and
the small number of persistent infections that have been observed
in the vaccine arm of the trials. It may be fair to assume that the
persistent infections in vaccinated individuals should be treated
as being equivalent to those in unvaccinated individuals, but it is
also possible that both their duration and their infectiousness
are different. The infections in vacinees recorded on the basis of
PCR-detected DNA positivity may be associated with low viral
load and not infectious at all. If this is the case, they can be ignored
from a transmission point of view. Unfortunately, as discussed
above, no test is currently available for determining the
infectiousness of an apparent infection.

A fairly clear picture has now emerged regarding the
mechanism of protection conferred by the current vaccines.5

The vaccines induce very high concentrations of neutralising
antibodies, much higher than for natural infection, and the
seroconversion rates in the trials approach 100%.5 Because the
evidence for this mechanism of protection is very convincing, it
would simplify model development and parameterisation to
assume that successfully vaccinated individuals are completely
protected from infection and thus cannot transmit infection.
However, as discussed above, data from the clinical trials
suggest that transient infections and a small number of persistent
infections can occur in vaccinated individuals,59,60 and these may
or may not be transmissible. Regan et al.57 considered transient
infection in estimating the impact of an HPV-16 vaccine in
Australia, and showed that this has significant implications
for herd immunity and overall effectiveness of vaccination. In
particular, this modelling demonstrates that the impact of
vaccination on reducing incidence and prevalence is reduced
significantly if transient breakthrough infection can occur and is
transmissible.

We are also interested in the duration of vaccine-conferred
protection. To date, the bivalent and quadrivalent vaccines have

proven efficacy for 6.4 and 5 years, respectively,5 and a
monovalent HPV-16 vaccine has proven efficacy through
8.5 years.61 Evidence that vaccination induces immune
memory has also been demonstrated for the quadrivalent
vaccine.60,62 The observed anamnestic response is a hallmark
of vaccines that induce long-term immune protection (like the
hepatitis B vaccine, which is also a virus-like particle vaccine
comprised of viral coat protein). It is thus considered likely
that vaccine-conferred immune protection will be long-lasting
and booster vaccination will not be required. Despite these
encouraging results, it is still necessary to consider the
implications of waning vaccine-conferred immunity until we
can be certain that protection lasts at least beyond the age at
which sexual activity places individuals at risk of developing
cancer later in life. There is as yet no experimental evidence to
suggest that the observed cross-protection will be as enduring
as for the vaccine types and there are strong theoretical
arguments to suggest that it may not be.49

A three-dose regimen has been used in the major vaccine
efficacy trials and is recommended for both currently licenced
HPV vaccines. However, the impact of incomplete vaccination
(i.e. less than three doses) has not yet been established and, to our
knowledge, has not been considered in mathematical models.
While it is generally considered that one dose will not be
effective, preliminary data from a trial of a two-dose regimen
of the quadrivalent vaccine in adolescent girls, which show
that antibody responses were not inferior to those for a three-
dose regimen, suggest that a two-dose regimen could be
sufficient,63,64 and the distinction between the recipients of
two doses and three doses can be ignored in mathematical
models. A large randomised trial of two v. three doses of the
quadrivalent vaccine in India is planned and will help to resolve
this question.65

Other issues for consideration

The importance of modes of HPV transmission other than
vaginal intercourse, and the prophylactic efficacy of condoms
and male circumcision have been largely overlooked in HPV
transmission models to date.

Are non-vaginal–penile modes of transmission important?

HPV can clearly be transmitted through sexual acts other
than vaginal intercourse. These could be incorporated into
transmission models to better estimate overall transmission
and burden of disease at all anatomical sites. Clearly, their
impact depends on the extent to which other anatomical sites
are reservoirs of infection for onward transmission, and sites in
themselves for the development of disease attributable to HPV
infection. We would need to consider the frequency at which
the different types of sexual act occur, the probability that
transmission will occur for each type of act, and whether
this is different for the insertive and receptive partners. As
discussed above, accurately measuring the probability of
HPV transmission in sexual partnerships is difficult and it is
even more difficult for specific types of sexual act.26,66,67

It is still not clear whether anal intercourse is the primary
mechanism for anal infection because anal HPV infection is
common in both men and women who have not reported this
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behaviour.25,68,69 Furthermore, transmission of HPV from the
anus of the female to the male genitals, and vice versa, has been
observed in couples not practising anal intercourse.25 The recent
study by Goodman et al.70 further asserts that auto-inoculation
of HPV to and from the anus also occurs. In women and men,
partner change is a more important indicator of the probability
of anal HPV acquisition than a history of receptive anal
intercourse.68,69 HIV-positive men appear to be at high risk of
anal HPV infection in the absence of anal intercourse, again
suggesting that this is not an essential route for anal HPV
acquisition.71 However, anal intercourse with numerous partners
does appear to be a risk factor for anal HPV infections in HIV-
positive MSM.71 An important issue for modelling is to estimate
the probability of HPV transmission for anal sex (in both
heterosexuals and MSM), and to establish whether it is different
for the insertive and receptive roles. This would help to determine
whether partner change rates or sexual practices are the main risk
factor for HPV infection, particularly in MSM.

It has been suggested that the practice of oral sex has been
increasing in recent decades.72 However, there appears to be
considerable cultural and contextual (e.g. sex work) variation in
trends in this behaviour,73–75 making an overall trend difficult to
determine. Similarly, estimating the role of oral sex in HPV
transmission and the development of oropharyngeal cancers is
complicated because, as with anal intercourse, partner change
seems to be associated with an increased risk of HPV-related
disease as much or more than reported oral sex.76,77 While there
is evidence for oral transmission of HPV,67,72 a study of HPV
transmission in 38 sexually active monogamous heterosexual
couples found no evidence of sero-concordant oral HPV
infection emerging in couples with discordant HPV sero-
status at commencement v. seven cases of genital transmission.25

Are circumcision and condoms protective
against infection?

A variety of studies have been conducted to investigate the
effectiveness of circumcision in the prevention of HPV
infection78–88 and the interpretation of the findings from these
is currently under debate. Recent randomised control trials have
reported beneficial effects of circumcision on HPV acquisition
and clearance in males in Africa.82,84,86 However, Van Howe has
suggested that these results can be completely explained by
sampling bias87 and has highlighted inadequacies in the methods
used for sampling the penis in another study.80,81

The evidence for whether condoms are a highly effective
barrier against transmission of HPV between partners is
conflicting.89 Overall, condoms appear to offer minimal
protection against incident infection with HPV but greater
protection against progression to disease (warts or intra-
epithelial lesions).89–91 Two studies have shown more rapid
resolution of clinically defined HPV lesions in both males and
females with consistent condom use,92,93 and Shew et al.94 found
reduced duration of infection with condom use in women.
Thus, if condoms reduce the time taken for resolution of HPV-
associated lesions, they may also indirectly reduce onward
transmission. Winer et al.95 showed a prophylactic effect of
consistent condom use in a cohort of young female university
students, although again this was stronger for prevention of

cervical lesions than for incident infections. It should be noted
that the benefits of condom use in general may be mitigated by
higher risk behaviours amongst condom users.18,66

Thus, despite numerous studies, there remain considerable
uncertainties regarding the efficacy of condoms and
circumcision in preventing the transmission of HPV, and the
published literature provides conflicting findings. However,
because the practice of circumcision and use of condoms are
widespread in many settings, it is important to consider their
potential prophylactic efficacy in transmission models.

Summary

In this review, we have identified the key gaps in knowledge
related to infection with and transmission of HPV from a
modelling perspective. We believe that the greatest uncertainties
impacting on the development and parameterisation of HPV
transmission models lie in the biological descriptions of
infectiousness and immunity. While sensitive methods are
available for the detection of viral genetic material (DNA and
RNA), we do not have a definitive method for determining when
an individual is infectious from the point of view of transmitting
infection. Furthermore, as we currently have no reliable correlate
of immune protection against infection, we are unable to say
precisely whether an individual has acquired immunity to
infection, either through exposure to infection or vaccination;
what level of protection has been conferred or how long it will
last; or whether this protection prevents onward transmission.
Clinical trials have shown that the current vaccines are highly
effective at preventing precancerous lesions and, in the case of
the quadrivalent vaccine, anogenital warts, but they have not
ruled out the possibility of transient infection that may lead to
transmission.

We have discussed several areas of uncertainty of lesser
importance. The extent to which condoms and circumcision are
protective against infection has not been firmly established.
To date, modellers have assumed transmission occurs via
heterosexual penile–vaginal intercourse because the greatest
burden of disease is cervical cancer, and this mode of
transmission is the most studied and the best understood.
However, other modes of transmission will need to be
considered more closely if their role in other diseases such as
anal and oropharyngeal cancers is to be studied.

Unfortunately for modellers, most studies of HPV natural
history have not been designed to inform models but to answer
broader questions. Studies of transmission in couples have not
been carried out on a large enough scale or with sufficient
sampling frequency to clearly observe and measure the
transmission event. It is our hope that as the demand for
accurate quantitative modelling studies to evaluate the impact
of vaccination programs increases, studies will increasingly be
designed with model parameterisation in mind.
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