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Abstract 
We propose a stochastic model for analyzing the influence of the physical environment on oceanic seed
dispersal. The model requires a description of the spatial configuration of the region and of the dynamics
of the physical processes involved (ocean and atmosphere dynamics). The degree of accuracy and
resolution of these descriptions will determine the accuracy of the simulations. Parameters to
characterize the species of interest will come from empirical knowledge about the species, via
experiments and measurements in the field. Two modeling approaches could be used, a particle model or
a density model. We discuss both options and provide some recommendations. The described model
could be used to answer questions about the origin of the current spatial distributions of species
dispersed by the ocean and to study metapopulation dynamics.

                                                
S. Pac. J. Nat. Sci., 2001, 19, 42-48

1 Introduction
Dispersal is a very important process in the life of most
organisms, playing a major role in their geographical
distribution (Brown, Gibson, 1983; Thorne, 1972) and
having a direct effect on the dynamics of metapopulations
(Hanski, Gilpin, 1997; Ims, 1995; Saunders et al., 1991).
In the South Pacific region, oceanic dispersal plays an
important role in the distribution and dynamics of plants.
Many species, especially those dwelling on or near the
shoreline, have fruits, seeds, seedlings, or vegetative parts
that float on salt water. These propagules are passively
dispersed by the sea.

Although dispersal is continually occurring, not all
dispersal events play a role in metapopulation dynamics or
in the geographical distribution of a taxon. Besides being
able to travel to a given location, a propagule has to be
able to survive, grow and reproduce upon arrival.
Moreover, in the case of colonization, it has to establish a
viable population. Therefore, together with the capability
of each species to establish and maintain populations
(Ebenhard, 1991), a series of factors will determine the
success in the spread of a species or the exchange
processes involved in metapopulation dynamics. These are
spatially explicit factors (Wiens, 1997), such as the
geographical distribution of suitable habitats and ocean
dynamics. As sessile organisms, plants cannot actively
select their habitat or their breeding partners, whereas
mobile organisms integrate heterogeneity over relatively
broad scales, and therefore use a coarse scale in their
interaction with habitat (Kotliar and Wiens, 1990; With,
1994). The importance of spatial specificity is higher in
plants due to this sessile character. For this same reason,
stochasticity is greater for plant populations than for
actively mobile organisms. Furthermore, the number of
pioneer propagules reaching a new location is often very
small, increasing the risk of stochastic extinction (Given,
1994; Lande, 1993). 

Phylogenetic molecular analysis can help identify the
origin of different populations and the relations between
them (Avise, 2000). However, genetic and geographical
distances are not necessarily correlated. When this happens
the question of why a species reached some places but not
others arises. A spatially explicit stochastic model can
show which are the more probable dispersal routes for a
particular species. Here we propose a model that can be
equally valid at different spatial scales, and for different
species. The scale of the model is given by the input data
sets describing the spatial characteristics of the region of
interest. The species is modeled using a set of specific
parameters. The spatial data sets required for such a model
are as follows:

(i) The spatial distribution of land and ocean, as a
digitized binary cell matrix in which each cell is of
one of two types: ocean or land.

(ii) A digitized vector field measuring drag in the
ocean cells. This represents the displacement
(distance and direction) per time unit that a seed
will experience if adrift in the cell. Depending on
the complexity and accuracy of the simulation,
displacement can be a constant, a random variable
characterized by mean and variance, or can follow
a known variation with time. This will depend on
available knowledge of oceanic currents and tides,
and, depending on the species, on geostrophic and
local wind patterns.

(iii) A digitized scalar field measuring habitat
suitability in the land cells, representing the
probability of successful settlement of a healthy
seed that arrives at that land cell. This primarily
depends on substrate, but it could also be
influenced by factors such as elevation, inclination,
climate, predators or presence of competing
species. This categorization of habitat suitability of
the land cells depends on the species of interest.
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For the purpose of this model, plant individuals can be in
one of three stages. For simplicity in the notation, we will
call them seed (propagule or mobile form of the plant,
usually seeds or fruits, but sometimes seedlings, as in
Rhizophora spp.), immature (rooted seedling and juvenile;
i.e. sessile plants that are not able to produce seeds) and
mature (fertile). The parameters characterizing the species
in the model are described later.

The working of the proposed model is straightforward.
The objective is to simulate the process of oceanic seed
dispersal in 'quick motion'. Using fast desktop computers
we can simulate the dispersal of one species over decades
or centuries in just a few hours or days, depending on the
machine and the complexity of the model. We select a
number of land cells as populated with given densities at
the beginning of the simulation and, when the desired
period of model time has elapsed, we obtain a final
population distribution. We can watch a 'movie' of the
evolution of the populations along time, where the model
shows the most probable interaction routes between
locations.

Oceanic seed dispersal is a chaotic process (another
reason to use a stochastic model), and thus a slight
variation in the initial conditions can induce a great
variation in the final results. Therefore, several simulations
would have to be run, and averaged, in order to obtain a
probability measure of the expected final distribution and
interaction routes. These can then be compared with the
actual distribution of the species, or with available
knowledge of the species’ metapopulation dynamics.

Here we describe the input data sets and parameters
that the proposed model will require, and the way that it
will work. We also provide some remarks on the model
and its applicability. The reader should bear in mind that
this paper just describes the model, and no specific
implementation or results of simulations are given here. 

2 Input data sets
The model requires three main input data sets. The first of
them we call the Map and is just a matrix of binary cells.
Each cell represents a plot of surface in the region of
interest. The size of the plot is determined by the number
of cells we are going to define in the region (see the
section below for the model parameters). Cells with a Map
value of 0 are cells where the seeds can be moved by
ocean currents, and those with a Map value of 1 are those
where the seeds can settle and plants grow if the habitat is
suitable. The easiest way to obtain the Map matrix is from
a raster geographical map. We can scan a suitable map of
the region, adjust the scale and assign the appropriate
value to each pixel.

The second input data set is the Drag, which is a two-
dimensional vector matrix whose element Dragxy is
defined only if Mapxy is 0. The two-dimensional vector
Dragxy is added to the position vectors of the seeds that are
adrift in the cell x,y each time unit. Every seed has a
position vector that determines its position. The Dragxy
elements can be constant vectors, or a set of means and
variances. If such, they are handled as four-dimensional
random variables with known distribution (we use new
values each time unit for the variables, according to their
probability distributions). In the most complex form, these
four-dimensional vectors (mean and variance of drag
strength in x and y directions) will change with time,
according to available knowledge of atmosphere and ocean

dynamics. These values can be obtained dynamically at
run-time from a known set of equations describing the
physical model (if any) or can be read from a previously
calculated look-up table.

The surface current patterns can be obtained from
sensors on oceanographic satellites. NOAA’s AVHRR
(Advanced Very High Resolution Radiometer) has a 1.1
km resolution covering any expanse of ocean between
81°N and 81°S. It is possible to obtain a Sea Surface
Temperature (SST) map from infrared images of the
region and compute a displacement vector field using
sequential images. This method, of maximum cross-
correlation (MCC), was devised by Ninnis et al. (1986) to
track sea ice displacements, and Emery et al. (1986)
demonstrated that it can be used to obtain surface
displacement patterns, using shallow drifters and a CTD
(Conductivity and Temperature Data-Logger) survey to
confirm the patterns and velocities of the SST-infrared
currents (Emery et al., 1992; Kamankian et al., 1990;
Kelly and Strub, 1992). 

Additionally, if the shape and buoyancy of seeds are
such that wind has a significant drag effect on them,
surface wind vectors can be computed, using geostrophic
winds computed from atmospheric pressure fields of 500
or 800 mb surfaces. The magnitudes of the geostrophic
winds are reduced by a factor of 0.7 and their direction
rotated clockwise in the Southern Hemisphere by 15°. This
method (Fofonoff, 1960) is still used by weather forecast
systems in the Pacific, although the dynamics of the ocean-
atmosphere boundary layer dynamics is not well
understood, and there is no agreement about the
appropriate value of the drag coefficient for wind speeds
greater than 5 ms-1. An alternative is the use of satellite
microwave scatterometer data to reliably measure wind
speed and direction. This has been demonstrated using
SEASAT data and ship and buoy observations (Brown,
1983). Today the SEASAT mission is finished, but all data
are archived; alternatively there are new and more accurate
scatterometers on board satellites such as the ERS series.
The third input data set is the Habitat, describing the
habitat suitability of the land cells. This is an integer
valued matrix defined for cells in which Mapxy is 1. The
values, from 0 to 100, are used to compute the spatial
specific probabilities of a fresh seed becoming a seedling,
to modulate the average number of seeds a mature
individual can produce, and, together with the life span,
the probability of death of each plant. The values are
derived from type of substrate, elevation, inclination,
climatic constraints, presence of competing species, and
predators. Habitat will depend on the species of plant
under study and on the data available for the region (such
as geological charts or vegetation land cover maps). One
simple way to construct the matrix is to divide the different
major types of habitats found in the region into several
categories, ranging from “very good” to “inadequate”,
assigning a corresponding probability of success to each
category. A map can be drawn with the different types of
habitat, using a raster image of Map, in which a land cell is
printed on the screen using a black pixel and an ocean cell
with a white pixel. The color of each black cell can then be
changed to one of a set of previously selected colors to
represent the different types of habitat. Converting the
raster image to a matrix of integers (each color is assigned
a different value) we obtain Habitat.

It is possible to merge Map and Habitat, in order to
optimize the algorithm at the core of the model and
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economize memory storage. Only one integer-valued
matrix, Map, would be necessary if a negative value is
used for the ocean cells (such as -1) and a value from 0 to
100 is used in the land cells to represent habitat suitability.

3 Parameters
The spatial scale of the model is defined by the cell size
and the size of the study region. These affect computation
time, the accuracy of the results, and the amount of data
needed to run the simulation. For a given cell size, the
bigger the region the greater the number of cells, and the
more the computations to be done per time unit. For a
given region, the smaller the cells, the greater the number
of cells and the greater the accuracy of the results, but only
while cell size is coherent with the resolution of the
available spatial data. If we use a finer cell resolution than
that of the spatial data, be may think that we have an
improved accuracy in the results, but this will not be real,
and we will only be increasing the computational
overhead. It is similar to what happens when we apply a
digital zoom to a raster image before applying a filter: we
have more pixels to deal with, but not more information.

To define the temporal scale we have to decide how
much time we want the simulation to cover and how much
real time a model time unit represents. If the latter is one
day, for example, then to simulate one year we need to run
the simulation 365 model time units. The magnitudes of
the values of Drag have to be adjusted to the magnitude of
the time units. Notice that each time unit is an entire run
throughout the main algorithm of the model. Thus, if we
are going to make a simulation of 1,000 years with a time
unit of one day, the computer will have to run the main
algorithm 365,000 times. If we use a time unit of one
week, the computational overhead will be reduced but we
will loose temporal resolution, as reflected by the rescaling
of the values in Drag. For example, when using a dynamic
Drag we cannot take into account tidal flows if we use
time units greater than 6 hours. Also seeds will travel
clumped in “time packets” if we use long time units,
instead of being set ashore with different time delays.

An extensive set of parameters characterizes a species,
some of which can be hard to measure. It is up to the
modeler to decide the degree of required accuracy.
Although generic values could be used for some
parameters, successful modeling of one species will be
difficult without a good knowledge of its biology. The
required parameters are as follows:

Seed dormancy: In some species, seeds have a period
of inactivity, failing to germinate even under favorable
conditions (Harper, 1977). This parameter is the average
time that must elapse before the seed is able to become a
seedling. If the seed’s dormancy period has not finished
when arrives at land, it will have to wait until the end of
the dormancy period. 

Immature mortality: Proportion of immature
individuals that do not become adult plants (mean, µ, and
variance, σ). A probability of death for each immature
individual is computed. It determines the proportion of
successfully dispersed seeds that become mature plants.  

Maturity time: Average time for an immature to
become a fertile individual, capable of producing an
average number of viable seeds. Each surviving 'seed'
begins to produce seeds when its life clock is greater than
the sum of dormancy time (if any) plus maturity time (in
dioecious species only if it is female).

Sex ratio (if dioecious): Determines the proportion of
each sex in the initial populations. Only females produce
seeds, and only if a male is available within the mating
range (see below).

Mating range: An estimate of the maximum distance
that pollen can travel. It depends on the pollinating
strategy of the species (e.g. foraging distance of pollinator
insects for entomophilous plants). If no mature plant is
available within the mating range of a given plant, it
cannot produce seeds. If the species is dioecious, the
individual within the mating range has to be male. In
monoecious self-compatible species a mating range of 0 is
used, meaning that no other plant in the neighborhood is
necessary for successful production of seeds.

Number of viable seeds per individual: Number of
viable seeds a mature plant can produce per season (µ and
σ). With this and fruiting season we obtain the probability
of a plant producing a given number of viable seeds each
time unit.

Fruiting season: Period of the year in which mature
plants produce seeds. It is expressed as time from the
beginning of the year (time 0) to that of the season, and
duration of the season. If this is one year, seeds are
produced all year round.

Number of seeds per dispersal unit: Some species will
favor the simultaneous arrival of several individuals in
order to increase the probability of successful colonization
(especially in dioecious species, which need individuals of
both sexes to found new populations). This can be
achieved by clumping together several seeds in one
dispersal unit (usually fruits).

Proportion of seeds from shoreline that reach the
ocean: Proportion of seeds produced by an individual
situated right on the shoreline that will reach the ocean (µ
and σ). This depends on how far shoreline individuals can
be from the water, and the characteristics of the terrain. In
mangroves, for example, this parameter will be high,
because almost all of the seeds fall directly to the water.
This parameter is used together with the next.

Maximum distance from the shoreline for oceanic
dispersal: Estimate of the average distance from the
shoreline to the first inland individual whose seeds cannot
reach the ocean (µ and σ). It can be a fraction of the cell
size or it can be several cells long. This and the prior
parameter are used to compute the distribution probability
of a seed reaching the ocean relative to its distance from
the shoreline.

Mature individual canopy radius: Average radius of
the canopy of a mature plant (µ and σ), used to compute
the probabilities of a seed falling at a given distance from
the stem. This is used to simulate regeneration within the
same spot of land with suitable habitat, i.e. viable seeds
that do not reach the ocean. Asexual reproduction is not
specifically included, but can be simulated using the
probabilities of seeds falling to the ground that will not
reach the ocean. 

Viability time of floating seeds in seawater: Average
time a seed remains viable while afloat in seawater (µ and
σ) from which we compute the probability that a floating
seed loses its viability. When it happens, the seed
disappears (unsuccessful dispersion). If this parameter is
unknown, we can use the next one as an approximation
(we assume that as long as the seed remains buoyant it is
viable). 

Floating time of seeds in seawater: Average time a
seed remains positively buoyant in seawater (µ and σ).
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With this value we can predict the probability that a seed
will sink. When this happens, the seed disappears
(unsuccessful dispersion).

Maximum density of mature individuals: Maximum
number of mature individuals per unit of surface (cell).
Land cells with such a number of mature individuals are
not suitable for seedling growth, and therefore this is the
maximum number of individuals that one land cell can
contain.

Life span: Average number of years (µ and σ) that an
individual lives, from which we compute a probability of
death for each plant. The probabilities are conditioned on
suitability of habitat in each specific location. Once a plant
is dead, it disappears, and is not considered further in the
computation of density in the cell. 

We can simulate the occurrence of local catastrophes,
as many possible types as desired: e.g. forest fires, floods,
draughts, earthquakes and temporal climatic alterations.
Each is characterized by the mean and variance of three
parameters: the frequency of occurrence is the average
number of occurrences per 100 years of model time, the
spatial range is the average affected area, and the survival
proportion is the average proportion of individuals that
will survive the catastrophe inside the affected area.
Whenever a catastrophe of a specific type happens, the
model assigns values to two random variables (affected
area and proportion of survivors) according to their
probability distributions. Then it randomly selects a
location as the center of the affected area and kills the
required number of plants using random selection.

4  The model
The proposed model is based on a subset of stochastic
processes called branching processes (Asmussen, Hering,
1983). A branching stochastic process is the mathematical
model of a population of individuals that live, give birth to
a finite number of individuals and die. Each individual
lives a random time L and generates a random number of
individuals, ν, that behave in the same way. Models of
branching processes differ depending on the process of
reproduction and on the probability distribution of the
vector (L,ν). The simplest form is the Bienayme-Galton-
Watson process (Bienaymé, 1845; Keyfitz, 1985), where
each individual has a life length of one time unit (L=1) and
produces the new individuals at the moment of its death. If
L is independent of ν and exponentially distributed the
process is a Markov branching process (Ethier, Kurtz,
1985). If L and ν are considered independent and
identically distributed for different individuals, but with
arbitrary distributions, the process is not Markovian, and is
called a Bellman-Harris process (Chauvin, 1986; Harris,
1948). If in a Bellman-Harris process we allow
dependence of ν on L, we have a Sevastyanov model,
which is an age-dependent process (Kaj, Sagitov, 1998). If
we assume that individuals produce children at randomly
chosen instants during their live, then it is a Kramp-Mode-
Jagers model (Jagers, 1975). The model has immigration if
we allow new individuals, not born of current individuals,
to appear in the population at different random times, and
we have a branching process with disasters if at random
times we allow the occurrence of disasters in which each
individual has a given probability of surviving
(Sankaranarayanan et al., 1978).

Within this frame, our model is a set of concurrent
Kramp-Mode-Jagers branching processes (i.e. populations)

with immigration, subject to disasters, evolving on a
spatially explicit environment that conditions the
probability distributions. The core of the model is the logic
that is performed every time unit of the simulation. Here
we describe the basics of the cycle. The flowchart in
Figure 1 can be used as a roadmap to the explanation that
follows.

Besides the input data sets and parameters described
above, the model uses another data set that up to now has
been implicit in the text: the list of individuals (seeds and
plants), ideally implemented as a dynamic list. The
simulation starts generating a list from the initial
conditions of the simulation: populated cells and average
density. With these data the model generates the required
number of initial individuals, assigning them to specific
random locations within the selected cells. Each individual
is assigned a random age within the species’ life span, and,
if dioecious, a random sex according to the sex ratio. We
also need a flag indicating if an individual is a seed (i.e. if
it still can be 'moved') or has begun its sessile life (i.e.
immature or mature plant). There are different methods to
generate random values for the variables according to their
probability distributions: inverse transformation, rejection,
composition, table look-ups and specific algorithms. See,
for example, Schmeiser (1980).

Once the clock begins to run, each mature female with
a mature male within mating range will produce a random
number (with known distribution, conditioned on the
suitability of habitat in the specific location) of new
individuals (i.e. seeds). If the species is not dioecious, each
mature individual will produce that same random number
of seeds if some other mature individual is available within
the mating range (unless the species is self-compatible).
Depending on the distance to the shoreline, each new seed
will have a probability of reaching the ocean. The ones that
fall on land will have to wait for the dormancy period (if
any) to finish and then, depending on habitat suitability,
will have a probability of becoming immature individuals.
Therefore, some will live and some will die (as a seed,
seedling or juvenile).

Individuals that reach the ocean will change their
location each time unit (if they are in ocean cells with non-
zero Drag). Each seed will have a probability of remaining
afloat and a probability of remaining viable. If any of these
fail, the individual disappears. If a seed reaches land, the
habitat suitability of the land cell is checked and the seed
will have a specific probability of rooting (becoming an
immature individual), after the intrinsic dormancy period
(if any). The seed may become a mature individual after
the necessary time units (depending on the proportion of
immature plants that do not reach maturity and on habitat
suitability). When this happens, if the necessary conditions
are met, it will begin to produce seeds, some of which will
be dispersed through the ocean. The seeds that fall to the
ground next to the mother plant can eventually become a
new mature plant. Thus, with time, some plants will grow
on new locations, produce seeds and thus start a new
population, while the initial population keeps growing. A
probability of death is computed for each mature
individual based on its age, the life span of the species, and
the habitat suitability.

All of these steps are accomplished each time unit
through the entire list, checking and altering the status of
each individual. The actions to be taken are functions of
the parameters, the current status of the individual (i.e. age,
sex, location), location (i.e. density of individuals and
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habitat suitability in land cells, current drag in ocean cells),
and model (i.e. fruiting season, catastrophes). 

This model is a “particle” model; i.e. it models each
individual as a separate unit, instead of a “density” model
in which only densities of seeds and plants in each cell are
considered. The particle model is more accurate: we follow
the seed through the ocean waiting for it to lose its
buoyancy or reach land, and see each plant grow and die
on specific locations. However we need a given amount of
memory for each individual in the model (about 50 bytes,
depending on the implementation), and therefore several
megabytes are needed to simulate a reasonably sized
region. If the computer is not powerful enough, we can
scale down the number of plants and seed production. The
main (most probable) dispersal routes and final
emplacements of the populations still should be shown in
the final results. The simulation can be run with different
number of seeds and plants to investigate the effect of this
rescaling on the results. 

A density model does not need a list of individuals. It
simply has two additional fixed size matrixes, one of plant
densities, Plant, and one of seed densities, Seeds. Plantxy
elements are two-dimensional vectors representing the
number of plants in the land cell x,y in the different stages
(number of immature and mature individuals in the cell).
In the case of dioecious species, we need four values per
element (male and female immatures, and male and female
mature plants). Seedsxy elements have as many dimensions
as stages are distinguished in the seeds at cell x,y (land or
ocean). As a minimum: number of buoyant seeds, and
number of dormant (if applicable) seeds. Probability
distributions are then used to transfer seeds and plants
from one stage to another inside the same cell. Seeds are
also transferred from one Seeds element to another
according to Drag, and from Seeds to Plants. Seeds
originate in land cells x,y in which Plantsxy has any number
of mature plants.

A combination of both particle and density models can
give a good degree of accuracy whilst keeping the
computer requirements within manageable bounds. It uses
a list of individuals only for seeds, and a density matrix for
plants. We recommend this approach, because it preserves
accuracy in the most delicate part of the process (the ocean
travel and seed settlement), specifically regarding
buoyancy times, whilst permitting realistic simulations
(regarding population densities and seed production) with
affordable hardware requisites. Simple discrete-time
population models can then be used to simulate the
population dynamics, and therefore some of the species’
parameters would not be necessary. For example just a
growth rate, r, and an equilibrium density, K, are needed if
the Ricker model is used (Hanski, 1999).

The simulation ends when the desired time units have
elapsed, the population has reached a stable distribution, or
the major routes of interaction have been established,
depending on the objective. We can use the list of
individuals or the Plants density matrix to plot the final
distribution on the raster image of Map. The algorithm can
compute run-time statistics such as successfully dispersed
seeds versus seeds produced per population, or percentages
of seed inflow and outflow between populations, and it is
possible to draw flow lines on the raster map to show the
main dispersal and interaction routes. This can help
explain why some locations are populated and some are
not, or why some populations interact and some do not.

Due to the stochastic nature of the model, the
simulation should be run several times with the same
parameters (the exact number depending on the variance of
the successive results) in order to compute a final
distribution for a given set of parameters, by averaging the
results of the different simulations. 

If different varieties of plants are labeled and used
simultaneously, it is possible to allow individuals to cross
and thus have in the final distribution “hybrid” individuals.
This requires another field in the records of the list of
individuals, a numeric label identifying the variety. At the
end of the simulation, different varieties and their hybrids
can be plotted in different colors. The final results will
reflect the distribution of the different varieties conditioned
on the presence and dispersal of the rest.

The model can also be used to study the effect of
specific parameters (e.g. seed buoyancy, life span) in the
dispersal capabilities of species. We just have to run
several simulations with different values for some of the
characteristic parameters of a species (even a theoretical
one) and compare the results.

 It is possible to perform spatial analysis on the results,
using an algorithm to label the different patches, to be able
to compute statistics regarding nearest neighbors, average
distances and sizes, or connectivity. One such algorithm is
described in Martín-Herrero and Peón-Fernández (2000).

5 Some remarks on the model
Whenever dealing with a model we should keep in mind
that the model is just an approximation to reality. When we
choose the factors we are going to use to act on the
variables, we can only choose the main ones from an
infinite set, i.e., those who will influence the final result
above the noise threshold we are ready to allow.
Sometimes we cannot include some factors in the model,
because we do not know their relation with the output, or
because we do not know how to include them, or just
because their inclusion would mean taking the model to an
undesirable degree of complexity. We should keep in mind
that even when we are not including these factors in the
model they still are acting on the real output, and thus we
should interpret the results of a simulation using this
knowledge. One such a factor in the model we have just
described is the human influence on seed dispersal.
Another is the tidal flows and seasonal variations in ocean
dynamics if we use a constant (annual averaged) Drag
matrix. Although a model is only an approximation to
reality, we are choosing how good the approximation is.

Within these considerations it could seem that using
probability distributions and random variables instead of
deterministic parameters blurs the final picture. However,
the stochasticity of the model plays a major role in
focusing the results. When we use a random variable, with
a given probability distribution, as a parameter to
characterize some factor we want to include in the model,
we are not only including the factor itself, but all the
“fuzzy” set of causes that contribute to the randomness of
the factor. Therefore, using stochastic modeling we are
modeling not only the deterministic part of the result, but
the noise too. Thus, we are implicitly modeling an infinite
number of smaller factors together with the main factors
we are explicitly including in the model.

Not every question concerning the actual distribution
of a particular species can be answered with the proposed
model. Apart from the non-deterministic nature of the
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process, it is impossible to account for all the factors
potentially involved. Many factors may change over time,
and catastrophes happen. Although we can introduce in the
model the occurrence of local catastrophes as a coarse
approximation, we would probably have to use modern
patterns of oceanic currents to simulate those of the non-
recent past. Nevertheless, the proposed model can provide
us with a better insight onto the problem of oceanic seed
dispersal and, when used together with other information
(genetic distance, sedimentology, historic records) it can
complement the study of the present distribution of
oceanic dispersed species in the Pacific. On the other hand,
if the objective of the study is metapopulation dynamics,
we only need the modern spatial patterns of ocean
dynamics and habitat suitability, and therefore the actual
interactions between populations can be obtained.
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