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Abstract

One of the classical problems in nonlinear control system analysis and design is to find a region of
asymptotic stability by the Direct Method of Lyapunov. This paper tentatively shows, via a numerical
example, that this problem can be easily solved using Quantifier Elimination (QE). In particular,
if the governing equations are described by differential equations containing only polynomials, then
the problem can be conveniently solved by a computer algebra software packages such as Qepcad or
Redlog. In our case study, we use a simple Lyapunov function and Qepcad to estimate the stability
region, and the results are verified by an optimization method based on Lagrange’s method.
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I. INTRODUCTION

In recent review papers [1-3], it is shown that some
control engineering problems of practical importance can
be solved by quantifier elimination (QE) software pack-
ages such as Qepcad [4] or Redlog [5, 6], which are based
on the cylindrical algebraic decomposition. The method
constructs a decomposition of R™ such that a given set
of polynomials have constant sign on each component.
Such a decomposition is a starting point for the elimina-
tion of quantified variables in a statement or a first-order
formula. If the formula is not true, the system returns
“false” as a result and the system works as a decision
maker, while if there is an equivalent quantifier free for-
mula, the system returns the formula as a result and
the system works as a quantifier eliminator. As shown
in Section IIL.C, for some problems QE is equivalent to
optimization method.

Even though the problem of finding a stability region
by the Lyapunov method could be considered as a type of
Multivariate Polynomial Inequalities (MPI) problem [2],
it seems there have been no attempts made to apply the
method of QE to this problem. Nonetheless we intend
to show that there are some problems for which QE is
effective. Hence the purpose of this paper is to show the
applicability of QE, taking an example from Pai [7] as a
case study.

This paper consists as follows: in Section II the region

of stability for the sample problem is shown as defined by
separatrices; in Section ITI, after reviewing the Lyapunov

method, the problem is solved by QE in Section IIL.A,
and by optimization in Section ITI.B. In Section III.C, the
problem of maximizing the region of stability is discussed
by introducing parameters in the Lyapunov function.

II. REGION OF STABILITY DEFINED BY
SEPARATRICES

We consider a dynamical system defined by a set of
differential equations given in [7] as,

i = —3y—x+2°
—2y+x — 2. (1)

The behavior of the system is characterized by its equi-
librium points and separatrices, among other things. It
is easy to see that the point (—1,0) and (1,0) are saddle
points and the origin (0,0) is a stable focus point. The
separatrices can practically be obtained by integrating
the differential equation numerically from a point suffi-
ciently close to the saddle point with both positive and
negative time directions. They are shown in Fig. 1; at
the saddle point two separatrices cross each other, one
is converging and the other is diverging as shown by ar-
rows; at the focus point two separatrices converge, and
the region of stability is the shaded region between two
converging separatrices including the stable focus point
or the origin.



Figure 1: Region of stability defined by separatrices.

III. REGION OF STABILITY BY LYAPUNOV
METHOD, APPROXIMATION BY AN ELLIPSE

The Lyapunov method attempts to make statements
on the stability of the equilibrium without any knowl-
edge of the solutions of the differential equations [8-10].
The Lyapunov theorem, in more or less restricted form,
says: for a given set of differential equations, such as
(1) with equilibrium at the origin, the origin is stable if
there exists a positive definite function V (z,y) such that
its total time derivative V(a?, y) for the differential equa-
tions (1) is not positive. The function V' (z,y) is called a
Lyapunov function. It should be noted that the theorem
gives only a sufficient condition and the region obtained
by the theorem is usually conservative. Since the region
is usually defined by a contour of the Lyapunov function
and if the function is relatively simple in form, it is easy
to know whether a given point belongs to the region of
stability.

A. Quantifier Elimination Method

Consider a positive definite function V(z,y) as given
in [7],

Viz,y) = 222 — 2zy + 3y° (2)

and its time derivative V (z,y) obtained as a total deriva-
tive of V(z,y) with respect to time along a particular
solution of (1) as,

V(z,y) = —32% + 32 — 42y — 392 (3)
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Figure 2: Elliptical region of stability and the dotted curves
of V(z,y) = 0. The area of elliptical region S = 2.78189 - --.

As a QE problem, the Lyapunov condition can be formu-
lated by a statement or a first-order formula: “For any
(z,y), V(z,y) < s implies V(z,y) < 0,” where z and y
are quantified variables and s is a free variable. Elimi-
nating the quantified variables from the above statement,
the following quartic equation in s is obtained (the listing
of an interactive session is given in the APPENDIX),

12965s* + 17368s% — 5065557 + 238505 — 3375 =0 (4)

As a polynomial in s this equation defines algebraic num-
bers as its root. One of the roots, which is positive and
real, is s = 1.98005 - - -. This is the level of the Lyapunov
function defining the elliptical region of stability as its
contour. The elliptical region of stability is shown in
Fig. 2 together with the curves V(z,y) = 0 in dotted line.
It can be shown that in the region between two curves
of V(z,y) = 0, V(z,y) < 0 holds except for the origin
where it takes the peak value of zero. The area of the
elliptical region is found to be S = 2.78189 - - -. It should
be noted that the contour line does not pass through the
saddle points.(This contradicts the statement in [7] that
V(z,y) = 2 defines the region of stability. The incor-
rectness of this statement is easily seen by the fact that
the slopes of the ellipse and the separatrix at the saddle
point are not equal, 2.0 for the former and 1.72075- - - for
the latter.)

B. Optimization Method

Anai [2] points out that some QE problems are equiv-
alent to the optimization problem and QE is more effec-



tive for non-convex type optimization problem. Pai [7]
suggests that the problem of finding a region of stability
is formulated as a minimization problem of a Lyapunov
function. As seen from Fig. 2, the ellipse defining the
region of stability touches the curve V(z,y) = 0 at, say
(zs,ys), and the problem of finding the region of stability
is formulated as an optimization problem: given a set of
differential equations as (1) and a positive definite func-
tion as (2), we want to find a point (rs,ys) such that
the function V(x,y) has a minimum value s, such that
V(zs,ys) = s, along the curve V(x,y) = 0. This is a
kind of optimization problem with constraints and can
easily be solved by the Lagrange’s method of indetermi-
nate coefficients.

It should be noted that although QE and the opti-
mization method gives the same result for s, the for-
mer gives it directly, while the latter indirectly via the
point (zs,ys). It should also be noted that the con-
straint in Lagrange’s method can have a wider interpre-
tation. It includes the point at which the two contour
curves cross or touch each other where any directions
have zero derivative. It may also include the stationary
point where V (z, y) has opposite sign on both sides of the
point (z4,ys) along the curve V(a?,y) = 0. In this case
V(z,y) does not satisfy the Lyapunov condition but it
may define a stability region. These points will be elabo-
rated elsewhere [11]. Since the optimization method has
no restriction on the form of the governing equations and
the Lyapunov function, it has a wider applicability than
the method by QE.

3
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Figure 3: Maximum elliptical region, a = 0.904---, b =
0.5955--- in (5) and the area S = 4.2333---, separatri-
ces defining the stability region, and the dotted curves of
V(z,y) =0.

0.5

0.0

and
P

—-0.5

—-1.0

-1.5
-1.5-10-05 0.0 05 1.0 1.5

Figure 4: a = 0.7, b = 0, in (5) and the area S =
0.1940995 - - - .

C. Maximizing the Elliptical Region of Stability

Next consider the problem of maximizing the elliptical
stability region by considering the following quadratic
form with parameters a and b as,

V(z,y;a,b) = z? — 2bzy + ay® (5)

with the positive definite condition of a > b?. For the fol-
lowing prenez formula (see APPENDIX) describing the
Lyapunov condition,

A@x)@AYNILIL ®2-2a)<=01/\[x"2-2bxy+ay2)<=s]]-==>
[(2x-2by(83y-x+x3)+(2bx+2ay)(-2y+x-%x73))<=011.

Qepcad is supposed to give the equation relating three
free variables a, b and s. It is found that the present

version Qepcad does not give the answer in reasonable
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Figure 5: a = 1.71604---, b = 0, in (5) and the area S =
1.66010 - - -.
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Figure 6: a =8, b =0, in (5) and the area S = 1.04353 - - - .

time. But as shown in Sections III.A and III.B, both
methods can be used to solve the numerical case where
a and b have particular values. Finding s and putting
it in (5), we can obtain the major and minor axes, and
the area S of the ellipse. By numerical maximization we
obtain the maximum elliptical region S = 4.2333---, at
a =0904--- and b = 0.5955--- (S and s are related
as S = ws/va—b?). The elliptical region is shown in
Fig. 3 together with the separatrices defining the stability
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Figure 7: a = 16, b =0, in (5) and the area S = 0.761893 - - - .

region as given in Fig. 1 and the curves V(z,y) = 0 in
dotted line.

It is interesting to note that the change in the shape of
the stability region with the change of parameters a and
b. Let us consider the case b = 0, for example. Increas-
ing a from 0, we can show that at a = 0.675444 - .-, the
origin changes from the saddle point to the peak point of
the surface defined by the quadratic form for V' (z,y) near
the origin, and the stability region appears. The area in-
creases as a increases (Fig. 4) and at a = 1.71604 - - -, the
maximum area of S = 1.66010---, is attained (Fig. 5).
Increasing a further, the area decreases steadily (Fig. 6)
and at a = 13.3245---, the origin becomes the sad-
dle point again and the positive region for the function
V(z,y) appears inside the elliptical region. Fig. 7 shows
such a positive region. The region no longer satisfies the
Lyapunov condition though it defines the stability re-
gion.(It can be shown that all the trajectories are inward
going along the ellipse boundary which guarantees the
stability in this case.) It can be shown that similar situ-
ation occurs for b # 0. These properties can be derived
from the characteristics of the quadratic form for V (z, y)
near the origin obtained by neglecting the higher order
terms.

IV. CONCLUDING REMARKS

It is shown that Qepcad can be applied to obtain the
region of stability for a sample problem and the results
are verified with that by the optimization method by La-
grange multiplier. For the sample problem including pa-
rameters, it is found that the present version Qepcad fails
to give the result, but the shape of the stability region



is investigated by finding solutions at the different val-
ues of parameter applying both QE and the optimization
methods. It would be interesting to apply both methods
to non-autonomous systems, especially the optimization
method, which has wider applicability, taking into ac-
count the averaging method for differential equations.
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with a copy of computer algebra system, Qepcad. The
symbolic computation except QE and a part of numeri-
cal computations are done by REDUCE [6], the trajec-
tory and contour plottings by IDL [12], and the original
manuscript by LyX [13].
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APPENDIX: Qepcad session for a sample problem
from Pai’s book; lines in italic indicate the input.

Quantifier Elimination
by

Partial Cylindrical Algebraic Decomposition

Version 19 (Interactive)

by
Hoon Hong
(hhong@math.ncsu.edu)

North Carolina State University

Enter an informal description between ’[’ and ’]’:

[A sample problem from Pai’s book]
Enter a variable list:

(s,x,y)

Enter the number of free variables:
1

Enter a prenex formula:

(Ax) Ay) [ [(2x2-2xy+3y2)<=s]==

(-3x"2+3x74-4x"3y-3y"2 <=01].

fin

An equivalent quantifier-free formula:



[ 1296 74 + 17368 s°3 - 50655 872 + 23850 s - 3375 <= 0
\/4s-5<=01

In other words,

[ P1,2<=)\/P1,3<=0]

where
P_.1,2 = 1296 s°4 + 17368 s~3 - 50655 s°2 + 23850 s - 3375
P1,3=4s -5

The End

61




