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ABTRACT 

This paper presents the details of a parallel computing cluster built using existing computing resources at the University 
of the South Pacific. Benchmarking tests using the High Performance Linpack Benchmark were done in order to measure 
the gigaflops (billions of floating point operations per second) ratings for solving large systems of linear equations while 
varying the number of computers and Ethernet switches used. These tests provided an overall maximum gigaflops rating 
which allowed comparison of USP's cluster with leading edge clusters from around the world. Efficiency results also 
provided insight in how improving the existing network infrastructure might improve the performance of USP's cluster and 
increase its gigaflops rating. Further tests revealed that the number of Ethernet switches used in USP's current network 
layout is a definite contributor to the low efficiency of the system as a whole. 
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1  INTRODUCTION 

In order to do computationally intensive research in 
any field, whether it be chemistry, physics, mathematics, 
or any of the other sciences, a powerful computer is 
needed. Unfortunately such powerful computers typically 
have large price tags and for that reason high performance 
computing facilities are not available to researchers locally 
in the South Pacific region. Purchasing computing time on 
systems elsewhere in the world is possible, but it is 
expensive and, in the case of the South Pacific, 
impractical, given the low bandwidth Internet connections 
available to communicate with such systems located 
offshore. 

For these reasons, computationally intensive research is 
difficult to do in the region, even though many locally 
important issues, such as  climate change modeling, could 
benefit significantly from it. To remedy this problem,  
given the budgetary and location constraints 
outlined previously, this paper details the performance of a 
high performance computing environment constructed 
solely from existing, unused (and therefore free) computer 
resources at the University of the South Pacific. In its  
present form, it is able to solve a wide range of 
computationally intensive problems in a  multitude of 
fields and disciplines and will hopefully foster further 
parallel computing  research at the University. 
 
2  METHODS 

To build the computing cluster with a zero dollar 
budget, already existing, but underutilized, high 
performance desktop computers at the University are 
teamed with several free open source software packages. 
The University of the South Pacific currently has 44 state 
of the art desktop computers donated by the Japanese 
government which are being utilized in labs on the Laucala 
(Suva, Fiji) campus at the Department of Maths and  
Computing Sciences. Each computer is equipped with a 2 
gigahertz Pentium 4 processor, 256 megabytes of RAM, 
and two 40 gigabyte hard drives. 

Currently, these computers are turned off and the labs 
are locked during night time hours (8:00 PM till 8:00 AM) 

primarily due to security and safety concerns and are 
completely unavailable for student use. This project makes 
use of these 44 machines and their 12 hours per day of 
unused time-in essence 528 hours of  computing time per 
day to perform research computations by using parallel 
processing. 

Parallel processing means linking together two or more 
computers to jointly solve a computational problem. 
Originally such computers were expensive and custom 
built. However, an increasing trend since the early 1990s 
has seen the movement from expensive and specialized 
proprietary parallel supercomputers towards networks of 
PCs or workstations (Becker et al. 1995). 

Clusters of homogeneous or heterogeneous PCs or 
workstations working together to solve a  problem are 
rapidly becoming the standard platforms for high-
performance and large-scale computing. Known as 
Beowulf clusters  (Sterling, 2001) these systems are built 
using very affordable, low-cost, commodity hardware such 
as Pentium PCs, fast Local Area Networks (LANs), and 
standard free open source software components such as the 
UNIX operating system (Hoffman and Hargrove, 1999), 
MPI, and PVM parallel programming environments. 

A common approach to parallel programming is to use 
a message passing library, where a process uses the library 
calls to exchange messages (information) with another 
process.  This message passing (Pacheco, 1996) allows 
processes running on multiple processors to cooperate in 
solving problems. When used correctly, it allows the group 
of computers to work as one. 

MPI (Gropp et al. 1996) is one such message passing 
interface standard. It is available on a wide variety of 
platforms, ranging from custom built massively parallel 
systems to networks of workstations. There are several 
implementations of MPI in existence. MPICH, used in this 
paper, is freely available from Argonne National 
Laboratory and Mississippi State University. 

A job management system is the software component 
that ensures the balanced use of cluster resources. It 
maximizes the delivery of resources to different computing 
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jobs, given competing user requirements and local policy 
restrictions. The software monitors the state of the cluster, 
schedules work, enforces policy and tracks usage. For this 
paper, the free open source Maui job management system 
and PBS scheduler (Feitelson and Rudolph, 1995) were 
used. 

For measuring the performance (benchmarking) of the 
parallel computing cluster, the High Performance Linpack 
Benchmark (Petitet et al. 2000) was used. Linpack 
(Dongarra et al. 1986) is a general purpose library for 
solving dense systems of linear equations in double-
precision (64 bit) arithmetic using the Gaussian 
elimination method. In addition to its value for solving 
systems of linear equations, Linpack has also found use in 
measuring the performance of supercomputers worldwide. 
The High Performance Linpack Benchmark keeps track of 
execution time and then divides this into the number of 
floating point operations that it performs to get a gigaflops 
(billions of floating point operations per second) rating. 
The gigaflops rating is the basis for the performance 
graphs in this paper. 
 
3  RESULTS 

The theoretical peak performance (P) of any parallel 
system is calculated by equation 1:  
 

P = SCFH        (1) 
              
In this equation, S is the number of computing nodes, C is 
the number of CPUs per computing node, F is the number 
of floating point operations per clock cycle, and H is the 
clock rate. Thus for 44 nodes using single 2 gigahertz 
processors, and assuming one floating point operation per 
cycle, the peak performance would be 88 gigaflops. 
Theoretically, the USP cluster should be able to reach that 
number. However, in practice this is never achieved 
because of efficiency issues. 

The percentage of time that a group of computers 
spend doing actual work on the problem (in contrast to the 
time they spend idle waiting for messages to arrive or for 
other computers to finish a required computation) in 
comparison to the theoretical peak performance is known 
as efficiency. The efficiency of a cluster at any point in 
time is the measured gigaflops rating Rmax, obtained by 
running the Linpack benchmark, divided by the theoretical 
peak performance as shown by equation 2. 
 

E = Rmax  / P          (2)   
  

As an example, if a computer system has twice as many 
nodes as another system but overall it is only half as 
efficient, both systems will be equivalent in their gigaflops 
rating. Thus efficiency is extremely important to consider. 

There are many things that can cause efficiency issues. 
If an algorithm is poorly designed, increasing the number 
of computers involved in a calculation will usually result 
in much lower efficiency. Such an algorithm would be said 
not to be scalable. A highly scalable algorithm should 
show little reduction. Linpack is very well designed and 
considered highly scalable (Dongarra et al. 1986). 
 

Communication problems can also cause efficiency 
reductions. In a parallel computing cluster, the way that the 
network connections are constructed and the speed and 
latency of those connections bear heavily on how well the 
entire system performs. If messages take especially long to 
travel from one computer to another that will likely impact 
the performance of the entire group as a whole. 

The existing computer laboratories used at USP 
consisted of 44 computing nodes and three 100 megabit 
Fast Ethernet switches located in two different rooms, the 
MaCS “Small Lab” and the MaCS “Large Lab”. Figure 1 
shows the setup of the entire cluster. In essence three sub-
clusters, each linked by a single switch exist within this 
group of computers. The first switch connects 16 
computing nodes which is located in the MaCS “Small 
Lab”. The second switch connects twelve computing nodes 
which are located in the MaCS  “Large Lab” and finally 
the third switch connects the remaining sixteen computing 
nodes in the MaCS “Large Lab”. Since this configuration 
cannot be changed, a looming question is how these 
different network topologies will affect the overall 
efficiency and thus the overall performance of the system. 

 
 

 
 

Figure 1. Existing USP MaCS computer lab arrangement 
 

Given that the Linpack algorithm is considered highly 
scalable, to determine the efficiency impact of increasing 
the numbers of computing nodes and also the numbers of 
Ethernet switches, several High Performance Linpack 
Benchmark runs were made with varying numbers of 
computing nodes (and therefore involving varying 
numbers of Ethernet switches). As the benchmark dictates, 
the highest performing problem set solved is quoted for the 
gigaflops rating. 
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Table 1. Linpack Benchmark Results 
 

Nodes Switches N(1/2) Nmax Rmax Eff. 
4 1 4000 14000 4.891 61% 
8 1 5000 20000 8.97 55% 
12 1 8000 25000 12.41 52% 
16 1 9000 28000 16.24 51% 
28 2 14000 36000 20.22 36% 
44 3 22000 48000 24.20 28% 

 
Using the 16 computing node “Small Lab” cluster, runs 

were done of 4, 8, 12, and 16 computing nodes using one 
Ethernet switch. The results are shown in table 1.  N 
represents the size of the linear equation system that was 
solved for the given peak gigaflops rating. N(1/2) 
represents the size of the linear equation system that was 
solved for half this rating. Rmax is the maximum gigaflops 
rating found for a series of problem sizes. For example, the 
16 computing node run solved a 28,000 by 28,000 number 
matrix averaging 16.24 billion floating point operations 
per second with an efficiency of 51%. Essentially it spends 
half the time working on the problem and the other half 
communicating or waiting for data.  As per N(1/2), it 
solved a 9,000 by 9,000 number matrix averaging 8.12 
billion floating point operations per second.  

One interesting feature to note on this chart is that as 
the number of computing nodes are increased the gigaflops 
rating also increases. This would be expected with more 
computers you can calculate more numbers. Another 
interesting feature is that the efficiency is highest using 4 
computing nodes at 61% but then drops off when using 8 
computing nodes to 55%.  It levels off at 52% and 51% 
using 12 and 16 nodes respectively. Communication 
delays are relatively low with only 4 computers involved. 
As the numbers of machines increases, delays do as well 
and efficiency suffers. However, this is tempered by the 
scalability of the algorithm with the higher computing 
node counts. 

In order to use more than 16 computing nodes at the 
USP computer labs, another switch would need to be 
employed. For the next runs, the two MaCS “Large Lab” 
sub clusters were joined together to create a cluster 
consisting of 28 computing nodes and two switches. The 
results of the benchmark is shown in table 1.  Gigaflops 
numbers have certainly increased-up to 20.22 billion 
floating point operations per second for a matrix of size 
36,000 by 36,000. However, efficiency has definitely 
suffered at 36%. Two thirds of the time, the cluster is not 
doing productive work. 

To go beyond 28 computing nodes, all three sub 
clusters, the 2 MaCS “Large Lab” sub clusters and the 
MaCS “Small Lab” sub cluster, will need to be joined 
together. This will create a cluster of 44 machines across 3 
Ethernet switches. The results from benchmarking this 
cluster are shown in table 1. Again, the gigaflops rating 
rises to 24.20 but much more slowly than before. As 
shown in figure 2 even though we have significantly 
increased the number of computing nodes the gigaflops 
performance has not risen linearly. This is mainly due to 
the paltry 28% efficiency of the system. Almost three 
quarters of the time, the cluster is not doing productive 
work. 

 

 
 
Figure 2. Comparison of cluster performance against 
different number of nodes. 
 

Now that we have the peak gigaflops rating of 24.20 
over 44 computing nodes, we can compare the 
performance of the cluster at USP with other 
supercomputers from around the world. The Top 500 
project (Meuer et al. 2004) was started in 1993 to provide 
a reliable basis for tracking and detecting trends in high-
performance computing. A list of the sites operating the 
500 most powerful computer systems is assembled and 
released twice a year. The best performance on the 
Linpack benchmark is used as a performance measure for 
ranking computer systems. 

The third fastest computer in the world (the two fastest 
are not clusters in the same sense as USP's system) 
according to the Top 500 is a cluster consisting of 1,100 
Apple  Computer Power Mac G5 desktops at Virginia 
Polytechnic Institute and State University (Showerman and 
Enos, 2004).  Each node on the cluster is a Power Mac 
computer with dual 2 gigahertz PowerPC 970 processors 
made by IBM, 4 gigabytes of memory and 160 gigabytes 
of storage. They are connected together using Infiniband 
interconnect technology and Gigabit Ethernet switches. 
This Apple cluster gained its third place with a 10.3 
teraflops ranking, and became only the third computer in 
the world to achieve a performance of more than 10 
teraflops.  

10.3 teraflops is 10.3 trillion floating point operations 
per second which means Virginia Tech's system is roughly 
425 times faster at solving systems of linear equations than 
USP's cluster. However, it uses 50 times more CPUs, has 
much more hard disk space and memory, and utilizes a 
much better networking infrastructure. Better networking 
interconnections should be able to improve USP's 
performance results as well. If the efficiency of the cluster 
can be improved then the performance of the cluster will 
increase even if no additional CPUs are added to the 
system. 

Because Linpack is highly scalable, the network and its 
topology of multiple switches seem to be causing the 
efficiency problem of the previous USP results. To prove 
this experiment was devised in order to compare 
efficiency. Three runs of 12 computing nodes each were 
benchmarked. The only difference between them was the 
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number of switches used. One run used 12 computing 
nodes all on one switch. Another used 6 computing nodes 
each on two switches for 12 in all. Finally the third used 
four computing nodes each on three switches again for 12 
in all. 

In figure 3 we see a drop in the efficiency of the 
twelve-node cluster as these nodes are distributed over 
switches. First a efficiency of 52% over 1 switch is 
achieved, which is consistent with results from table 1.  
Then when these twelve nodes are distributed between 2 
switches (six nodes each), the efficiency decreases from 
above the 50% mark to about 42%.  When comparing this 
result to results from table 1 in which the efficiency of 28 
nodes was measured with two switches, results are quite 
similar.  The minor difference of a few percentage points 
could be said to be due to the increased number of nodes 
(Luo et al. 2002).  Finally when the same twelve nodes 
were distributed among the three switches, a 34% 
efficiency was measured.  This again is quite comparable 
to results from table 1 where 44 nodes were distributed 
among the 3 switches. 
 

 
 
 
Figure 3. This graph shows the efficiency of the cluster 
when number of nodes are fixed but the number of 
interconnecting switch changes. 
 
4  CONCLUSION 

This paper presents a 44 node parallel computing 
environment with a peak performance rating of 24.20 
billion floating point operations per second (gigaflops). It 
has been constructed at zero cost to the University using 
unused computing time from already existing USP 
computing resources. 

From the benchmark results presented, it can now be 
said that inter-switch communication plays a vital role in 
the performance of a parallel cluster such as the one 
created at USP. Improving networking hardware to reduce 
the switch count and increase switch performance should 
increase the efficiency of the system and thus increase the 
overall gigaflops rating. Research also shows that moving 
from Fast Ethernet to Myrinet (Boden, 1995) or Gigabit 
Ethernet (Innocente et al. 2000) provides faster 
performance results due to data throughput increases and 
communication latency decreases. However, as USP is 
lacking this infrastructure it was not possible to test these 
cases in this paper. 

By opening the cluster to projects from all departments 
in the University, it is hoped that a large number of 
students and faculty will gain experience in running the 

computing cluster. This critical mass of students, and the 
involvement of numerous other faculty in the projects of 
those students, will ensure that the cluster will continue to 
operate at peak performance. Also, since the parallel 
computing cluster can be controlled exclusively via a 
network connection, other campuses of the University of 
the South Pacific are able to easily have access to the 
facilities via USPNet, the satellite network linking other 
island countries to USP's Laucala campus in Fiji. 
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