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Abstract 

In developing the theory of stratified sampling usually the cost function is taken as a linear function of sample sizes hn  

considering the measurement and the overhead costs only. In many practical situations the linear cost function does not 

approximate the actual cost incurred adequately. For example when the cost of traveling between the units selected in the 

sample within a stratum is significant, instead of linear cost function a cost function that is quadratic in
hn  will be a 

more close approximation to the actual cost. In this paper the problem of finding a compromise allocation for a multiple 

response stratified sample survey with a significant travel cost within strata is formulated as a multiobjective non linear 

programming problem. A solution procedure is proposed using the goal programming approach. A numerical example is 

also presented to illustrate the computational details. 

Keywords: Multiple response, Travel cost, Compromise allocation, Multiobjective programming, Goal 

programming.  

 

1   Introduction 
In stratified sampling the population of N units is first 

divided into L non-overlapping and exhaustive 

subpopulation called strata, of sizes Lh NNNN ,...,,....,, 21  

with 



L

h

h NN

1

. 

Consider a population of size N  divided into L  non-

overlapping strata of sizes .,....,, 21 LNNN  Let simple 

random samples of sizes Lnnn ,...,, 21  be drawn to 

construct the estimators of the unknown population 

parameters. The problem of determining sample sizes 

Lhnh .,..,2,1;   is called the problem of allocation in 

stratified sampling literature. The total cost C incurred in a 

sample survey is a function of sample allocations 

Lhnh .,..,2,1;  . The simplest form of the cost function 

used in a stratified sample survey is a linear function of 

sample sizes hn  given as 
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hhnccC
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0 ,                                                     (1) 

where Lhch ,...,2,1;   denote the per unit cost of 

measurement in the h-th stratum and 0c  denotes the 

overhead cost. Other cost functions are also used for 

example Csenki (1997) used the cost function as 
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where  0  is a real number and hc  and 0c are as 

defined above. 

Usually the allocations hn  are worked out to minimize 

the variance  styV  for a fixed total cost C of the survey 

or to minimize the total cost of the survey for a fixed 

precision of the estimate. An allocation obtained as above 

is called an optimum allocation.  

Stuart (1954), using Cauchy-Schwarz inequality, 

showed for the optimum allocation with a linear cost 

function of the form given in (1), we must have    

hh

hh

SW

cn
= Constant ;   Lh .,.,.2,1 . 

This gives the sample size hn  in 
thh  stratum as: 
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where 



L

h

hnn

1

 denote the total sample size (Cochran, 

1977). The practical experience suggests that the linear 

cost function given in (1) may be used as a close 

approximation to the actual cost in most of the stratified 

sample surveys. It can also be noted that (1) is a special 

case of (2) with 1 . 

To collect the information from the units selected in the 

sample from a particular stratum the investigator has to 

travel from unit to unit. If the stratum consists of large 

geographical and difficult to travel area it may be costly to 

travel between the selected units. In this situation the linear 
cost function given in (1) will not be an adequate 

approximation to the actual cost incurred. The investigator 

will have to spend a significant amount on travel between 

the selected units. Beardwood et al. (1959) suggested that 

the cost of visiting the hn  selected units in the h-th stratum 

may be taken as Lhnt hh .,.,.2,1;   approximately, 

where ht  is the travel cost per unit in the h-th stratum. 

This conjecture is based on the fact that the distance 

between k randomly scattered points is proportional to k . 

Under the above situation the total cost of a stratified 

sample survey will be the sum of (i)  the overhead cost, (ii) 

the measurement cost, and (iii)  the travel cost. This gives 

the total cost C as: 
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0 ,                                 (4) 

which is quadratic in hn . 
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The study presented in this paper shows that the 

problem of optimum allocation with quadratic cost cannot 

be solved using the classical Lagrange Multipliers 

Technique as solved in case of linear cost. The problem is 

formulated as a neat Nonlinear Programming Problem that 

can be handled by available optimization softwares. 

Furthermore, this study presents a multivariate version of 

this problem also that is of great practical importance 

because in actual practice usually in sample surveys a large 

number of characteristics are measured on each unit 

selected in the sample. When the travel cost is significant 
and varies from stratum to stratum, that is the cost function 

is as given in (4) the problem of finding the optimum 

allocation may be given as the following Nonlinear 

Programming Problem (NLPP): 
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where 00 cCC  , is the cost available to meet the travel 

and measurement expenses. For solving the NLPP (5) if 

Lagrange Multipliers Technique is used one has to take the 
cost constraint as an equation and to ignore the non-

negativity restrictions. The Lagrangian function is defined 

as 
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where   is the Lagrange Multiplier. 

 

Differentiating (6) with respect to Lhnh .,..,2,1;   

and   partially and equating to zero, we get the following 

(L+1) equations as: 
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Equations (7) are implicit equations in hn , therefore, 

the exact solution of the system of equations (7) and (8) is 

not possible. However, an approximate solution may be 

obtained by using approximation methods like Newton 

Ramphson’s Method. In the absence of an explicit 

solution, when the numerical values of 

0,,,, ctcSW hhhh and C  are available, we can use the 

software package ‘LINGO’ to solve the NLPP (5). LINGO 

is a user’s friendly package for constrained optimization 

developed by LINDO Systems Inc. A user’s guide- 

LINGO User’s Guide (2001) is also available. For more 

information one can visit the site http://www.lindo.com.  
In sample surveys usually several characteristics are to 

be measured on each selected unit of the sample. Such 

surveys are called “Multivariate or Multiple Response 

Surveys”. The problem of allocation for a multivariate 

stratified survey becomes complicated because an 

allocation that is optimal for one characteristic is usually 

far from optimal for other characteristics unless the 

characteristics are highly correlated. When the 

characteristics are highly correlated one may work out the 

characteristic-wise average of the individual optimum 

allocations for various strata and may use it for all 

characteristics. When the characteristics are uncorrelated 

there will be no obvious compromise. 

In such situations the sampler may use an allocation 

based on some compromise criterion that is optimum for 
all characteristics in some sense. In sampling literature 

these allocations are called compromise allocations. 

Among the authors who gave new compromise criterion or 

explored further the already existing compromise criteria 

are Neyman (1934), Peter and Bucher (undated), Geary 

(1949), Dalenius (1957), Ghosh (1958), Yates (1960), 

Aoyama (1963), Folk and Antle (1965), Chatterjee (1967, 

1968), Kokan and Khan (1967), Ahsan (1975-76, 1978), 

Ahsan and Khan (1977), Schittkowski (1985, 1986), 

Bethel (1985, 1989), Chromy (1987), Jahan et al. (1994, 

2001), Jahan and Ahsan (1995), Khan et al. (1997), Bosch 

and Wildner (2003), Singh (2003), Khan et al. (2003, 

2008), Khan et al. (2010), Khowaja et al. (2011). 

With the advancement of Mathematical Programming 

Techniques, Multiobjective Programming emerged as a 

strong tool to deal with the simultaneous optimization of 

more than one objective functions. Authors like Kozak 
(2006), Díaz-García and Ulloa (2006, 2008) and some 

others discussed the problem of optimum allocation in 

multivariate stratified surveys as a multiobjective 

programming problem and suggested techniques to solve 

them.  

Usually the travel cost within the strata to approach the 

selected units for measurement is ignored while 

constructing the cost function. There are practical 

situations where the travel cost is significant and thus 

cannot be ignored. In the present paper we assume that the 

characteristics are uncorrelated and the cost of traveling 

( ht ) with in stratum to contact the selected units is 

significant. That is, the cost function is of the form as 

given in (4) that is quadratic in hn . The problem of 

allocation in multivariate stratified sample surveys with p -

independent characteristics is formulated as a 

multiobjective NLPP. The ‘ p ’ objectives are to minimize 

the individual variances of the estimates of the population 

means of p -characteristics simultaneously, subject to the 

cost constraint. The formulated multiobjective NLPP is 

solved by “Goal Programming Technique” using software 

package LINGO. 

  

2   Formulation of the Problem 
The Multiobjective Non-linear Programming Problem 

(MNLPP) discussed in the previous section may be 
expressed as: 

http://www.lindo.com/
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where    ,.,..,2,1;

1
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denote the sampling variance of the estimate 
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ignoring fpc of the overall population mean 

pjY j ,...,2,1;   of the j-th characteristic. 
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 is the sample mean from the h-th 

stratum for the j-th characteristic and jhky  is the value of 

the k-th selected unit of the sample from the h-th stratum 

for the j-th characteristic; 

..,..,2,1;.,..,2,1;.,..,2,1 pjLhnk h    

The restrictions LhNn hh ,...,2,1;2   are introduced 

to obtain the estimates of the stratum variances and to 
avoid the problem of oversampling. 

It is assumed that the true values of 
2
jhS  are known. In 

practice, if not known, some approximation of these 

parameters obtained in some recent or preliminary survey, 

may be substituted in their place. 

 
3   The Goal Programming Approach 

To solve the problem (9) using goal programming, we 

first solve the following p Non Linear Programming 

Problems (NLPPs) for all the ‘p’ characteristics separately 
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Let  
 jLjjj nnnn .,..,, 21  denote the solution to the j-th 

NLPP in (12) with 

jV  as the value of the objective 

function given by 
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Further, let  
 Lcccc nnnn .,..,, 21  be the vector of 

optimum compromise allocations with  
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as the optimal value of the objective 

function for j-th characteristics under this allocation. 

Obviously, 
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A reasonable criterion to workout a compromise 

allocation may be to    “Minimize the sum of increases in 

the variances pjV j .,..,2,1;   due to the use of the 

compromise allocation”. We may express the 

multiobjective NLPP (9) using (14) with the above 

compromise criterion as the following single objective 

NLPP 

pj

LhNnand

x

Cntnc

xVVtoSubject

xMinimize

hh

j

L

h

L

h

hhhh

jjcj

p

j

j

.,.,.2,1;

,...,2,1;2

0

,

,

.

1

0

1

1































 



 





         

                                                                                       (15) 

where  Lcccc nnnn .,.,., 21  denotes a compromise 

allocation with variance 
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and pjx j .,..,2,1;0   are called goal variables whose 

values are to be determined. 

The ‘Goal’ is to “Find the compromise allocation 

 
 Lcccc nnnn .,..,, 21  such that the increases in the j-th 

variance due to the use of compromise allocation should 
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NLPP (15) may be restated as 
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where the value of cjV  is substituted from (16) and the 

compromise allocation Lhnhc ,...,2,1;   is replaced by 

hn  for simplicity. The optimal solution to the NLPP (17) 
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will be the required optimum compromise allocation 
cn  

that minimizes the sum of deviations of the variances from 

their optimum values. NLPP (17) may be solved by using 

software package LINGO. In the next section a numerical 

example is given to illustrate the Goal Programming 

Approach. 

 

4 Some Other Compromise Allocations with 

Quadratic Cost 
In this section three other compromise allocations are 

discussed for the sake of comparison with the proposed 

allocation. 

 

4.1 The Proportional Allocation for Fixed 

Quadratic Cost 
Because of its simplicity the proportional allocation is 

the most commonly used allocation in stratified sample 

surveys. In the proportional allocation the sample size 

from the h-th stratum is proportional to its stratum weights 

that is 

LhWn hh .,..,2,1;   

or   LhkWn hh .,..,2,1;                   (18)  

where  0k  is the constant of proportionality. 

From (18) 
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size. Thus (18) gives 
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To work out the value of the total sample size n  for 

fixed cost we proceed as follows. Substitution of the 

values of hn  from (18) in the cost function (4) with 
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The RHS of (20) is quadratic in n . Putting 
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The RHS of (22) will be positive if and only if 
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2 4  which is true because 04 0 AC . 

When the numerical values of BA, and 0C  are 

available we can easily compute the value X . 2X  will 

give the total sample size n . Substitution of the value of 

n  in (19) gives the proportional allocation.  

 

4.2 Cochran’s Compromise Allocation with 

Quadratic Cost 
Cochran (1977) gave the compromise criteria by 

averaging the individual optimum allocations 

jhn  that are 

solutions to NLPP (17) for ,.,..,2,1 pj    over the 

characteristics. 

Cochran’s compromise allocation is given by 
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4.3   Minimizing Weighted Sum of Variances with 

Quadratic Cost  
To work out a compromise allocation Khan et al. 

(2003) used the compromise criteria as 

“Minimize
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 , where 0ja  is the weights 

assigned to jV ”. 

The above compromise criterion was first used by Yates 

(1960). Khan et al. (2003) conjectured that 
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To compare their allocation with the proposed 

allocation the Khan et al. (2003) compromise allocation is 

worked out with a quadratic cost function in the following. 

The objective function of this problem may be expressed 

as: 
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The NLPP for finding the optimum compromise allocation 

according to Khan et al. (2003) compromise criterion may 

be given as  
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When the numerical values of 0,,,, CtcAW hhhh and hN  

are available, LINGO optimization software may be used 

to obtain a solution. 

 

5   A Numerical Illustration 
In the table below the stratum sizes, stratum weights, 

stratum standard deviations, measurement costs, and the 

travel costs within stratum are given for four different 

characteristics under study in a population stratified in five 

strata. The data are mainly from Chatterjee (1968). The 

values of strata sizes are added assuming the population 

size as 6000. The traveling cost ht is also assumed for the 

five strata by the authors. 

 

Table 1. Values of , , ,h h h h jhN W c t and S  for five strata 

and four characteristics. 

h  hN  hW  hc

 

ht  jhS  

hS1

 

hS2  hS3  hS4

 

1 1500 0.25 1 0.5 28 206 38 120 

2 1920 0.32 1 0.5 24 133 26 184 

3 1260 0.21 1.5 1 32 48 44 173 

4 480 0.08 1.5 1 54 37 78 92 
5 840 0.14 2 1.5 67 9 76 117 

 

The total budget of the survey is assumed to be 1500 

units with an overhead cost 3000 c  units. Thus 

1200300150000  cCC  units are available for 

measurement and travel within strata for approaching the 

selected units for measurement. 

 

5.1 The Proposed Compromise Allocation with 

Quadratic Cost 
Using the values given in Table 1 the NLPP (12) and 

their optimal solutions 4,3,2,1; 


jn j  with the 

corresponding values of 
jV  are listed below. These values 

are obtained by software LINGO. 

 

For j =1 
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n

n

n
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nnnn
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nnnnn
Minimize

      (25)  

The optimum allocation  
 15141312111 ,,,, nnnnnn  is 

,1150.151,5509.212,6535.193 131211   nnn

.6156.182,82734.96 1514   nn The corresponding value 

of the variance ignoring fpc is 503902.11 V . 

Similarly for j = 2, 3 & 4 the results are    

 j = 2; ,55834.84,4963.442,7324.535 232221   nnn    

.779119.8,46572.24 2524   nn  The corresponding value 

of the variance ignoring fpc is 78476.102 V . 

j=3; ,3332.166,0994.184,3325.210 333231   nnn   

.6085.165,0209.112 3534   nn The corresponding value of 

the variance ignoring fpc is 349571.23 V . 

j=4; ,6995.205,4944.410,6400.208 434241   nnn    

.59035.79,09868.41 4544   nn The corresponding value 

of the variance ignoring fpc is 86480.234 V .  

Using the computed values of 4,3,2,1;  jV j  and the 

compromise criterion conjectured in section 3, the Goal 

Programming Problem given in (17) may be expressed as:
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9844.876624.181584.459824.5849
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                             (26) 

 

The optimum compromise allocation which is the 

solution to the NLPP (26) given by the optimization 

software LINGO is: 

,7233.162,3831.374,1612.309 321  
ccc nnn  

.01911.77,8336.44 54  
cc nn  

 

After rounding off to the nearest integer value we get the 

optimum compromise allocation as 

77,45,162,374,309 54321  
ccccc nnnnn The  

 

variances  jstyV  under compromise allocations denoted 

by  
.compjstyV   are: 

    ,26904518.14,152413105.2
.2.1 

compstcompst yVyV

    0178660.25&33971459.3
.4.3 

compstcompst yVyV

 with increases in the variances for the individual 

characteristics as: 

 

109451.19903062.0

,472783.3,6482838.0

43

21





xandx

xx
 

 

 

 

 

5.2   Proportional Allocation with Quadratic Cost 

Using the values of hh tc , and hW  as given in Table 1 

with 12000 C  the numerical values of A and B are 

obtained as  

A=1.2850   and    B=1.8353. This gives 

.8532.29 nX  

or .2136.8912  Xn  

Substituting this value of n  in (18) the proportional 

allocation is obtained as: 

.7699.124,2971.71

,1549.187,1884.285,8034.222

54

321





nn

nnn
 

After rounding off to the nearest integer value we get 

.125,71,187,285,223 54321  nnnnn  

The variances of  jstyV  under proportional allocation 

(ignoring fpc) may be obtained by substituting the above 

values of hn  in variance formula 

  ,4.,..,2,1;

1

22




j
n

SW
yV

L

h h

jhh
jst                             (27) 

which gives  jstyV  for 4.,..,2,1j  as: 

  ,6350.111 
propstyVV    9285.1822 

propstyVV  

  5583.233 
propstyVV &   1678.2644 

propstyVV  
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Table 2. R. E. as compared to proportional allocation. 

S.No 

 

 

(1) 

Compromise  

allocations 

 

(2) 

Values of 4&3,2,1; jV j  under various 

compromise allocation 

Trace 

 

(3)+(4)+(5)+(6) 

(7) 

R.E. 

= ..Pr Compop TT  

(8) 1V  

(3) 

2V  

(4) 

3V  

(5) 

4V  

(6) 

1 
Proportional 

 
1.6350 18.9285 2.5583 26.1678 49.2896 1.00 

2 

Cochran’s 

Compromise 

allocation 

1.7345 15.8570 2.7010 26.1775 46.4700 1.06 

3 

Khan’s 

Compromise 

allocation 

3.0100 13.6979 4.4648 25.8342 47.0061 1.05 

4 
Proposed 

 
2.1524 14.2690 3.3397 25.0179 44.7790 1.10 

 

5.3 Cochran’s Compromise Allocation with 

Quadratic Cost 
For the present example Cochran’s compromise 

allocations given by (23) are  

,9265.151,4103.312,0896.287 321  nnn  

148.109,6031.68 54  nn  

After rounding off to the nearest integer value we get  

.109,69,152,312,287 54321  nnnnn  

The variances  
CjstyV  under the Cochran’s compromise 

allocation are 

  ,7345.111  Cst
C yVV    8570.1522  Cst

C yVV  

  7010.233  Cst
C yVV  and   1775.2644  Cst

C yVV .  

 

5.4 Khan’s Compromise Allocation with 

Quadratic Cost 
Using the values given in Table 1 the NLPP (24) 

becomes 
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                                                                                       (28) 

 

The optimal solution to NLPP (28) using optimization 

software LINGO is obtained as: 

 

 

.5408.43,1666.40

,2513.185,0147.415,9282.310

54

321





nn

nnn
 

After rounding off to the nearest integer value we get  

.44,40,185,415,311 54321  nnnnn  

The variances  jstyV  using the Khan et al. (2003) 

compromise criterion are 

,0100.3
1


K

V  6979.13
2


K

V  4648.4
3


K

V  and 

8342.25
4


K

V , where ‘K’ stands for Khan’s compromise 

allocation. 

 

6   Results and Discussion 
In this section a comparative study of the four 

compromise allocations discussed in this paper has been 

made. The basis of comparison is the traces of the 

variance-covariance matrices of the estimates under 

various compromise allocations. Since the characteristics 

under study are assumed as independent, the covariances 

are zero. The traces are the sum of the diagonal elements 

of the variances-covariance matrices that are the variances 

of the estimates of the population means of the different 

characteristics. Sukhatme et al. (1984) define the relative 

efficiency (R. E.) of a compromise allocation with respect 

to proportional allocation as 

R.E.: = 
.

.Pr

Comp

op

T

T
                     (29) 

where .PropT = Sum of the variances under proportional 

allocation.  and    .CompT = Sum of the variances under the 

given compromise allocations. Column (8) of Table 2 
gives the R.E. of the three compromise allocation 

discussed in this article as compared to the proportional 

allocation. 

 

7   Conclusion 
The results summarized in Table 2 indicate that the 

proposed compromise allocation compares favorably with 
the other studied allocations when the travel costs within 

the strata are significant.  

 

 

 



38                                                                                                            Shazia Ghufran et al. : A multiple response stratified 

 

Acknowledgements 
The authors are grateful to the learned referees and the 

editors for their valuable suggestions and comments that 

helped us to improve the paper in its present form. 

 

References 
Ahsan, M.J. 1975-76. A procedure for the problem of 

optimum allocation in multivariate stratified random 

sampling. The Aligarh Bull. of Math. 5-6, 37-42. 

Ahsan, M.J. and Khan, S.U. 1977. Optimum allocation in 

multivariate stratified random sampling using prior 

information. Journal of Indian Statistical Association 

15, 57-67. 

Ahsan, M.J. 1978. Allocation problem in multivariate 

stratified random sampling. Journal of the Indian 

Statistical Association 16, 1-5. 

Aoyama, H. 1963. Stratified random sampling with 

optimum allocation for multivariate populations. 
Annals  of  the Inst itute o f  S ta ti st i cal 

Mathematics  14 ,  251-258. 

Beardwood, J., Halton, J.H. and Hammersley, J.M. 1959. 

The shortest path through many points, Proc. Cambridge 

Phil. Soc., 55, 299-327. 

Bethel, J. 1985. An optimum allocation algorithm for 

multivariate surveys. Proceedings of the  Survey 

Research Methods section, American Statistical 

Association  209-212. 

Bethel, J. 1989. Sample allocation in multivariate surveys. 

Survey Methodology 15, 47-57. 

Bosch, V. and Wildner, R. 2003. Optimum allocation of 

stratified random samples designed for multiple mean 

estimates and multiple observed variables. 

Communications in Statistics- Theory and Methods 32, 

1897-1909. 

Chatterjee, S. 1967. A note on optimum allocation, 
Scandinavian Actuarial Journal 50, 40-44. 

Chatterjee, S. 1968. Multivariate stratified surveys, 

Journal of  Ameican. Statistica. Association 63, 530-534. 

Chromy, J.R. 1987. Design optimization with multiple 

objectives.  Proceedings of the Survey Research 

Methods section, American Statistical Association 194-

199. 

Cochran, W.G. 1977. Sampling Techniques, 3
rd

 
 

ed., John 

Wiley, New York.  

Csenki, A. 1997. Optimum Allocation in stratified random 

sampling via Holder’s inequality, Statistician 46, 439-

441. 

Dalenius, T. 1957. Sampling in Sweden. Contributions to 

the Methods and Theories of Sample Survey Practice, 

Almqvist and Wicksell, Stockholm. 

Díaz-García, J.A. & Cortez, L.U. 2006. Optimum 

allocation in multivariate stratified sampling: multi-
objective programming, Comunicación Técnica No. I-

06-07/28-03-2006 (PE/CIMAT), México. 

Díaz-García, J.A. and Cortez, L.U. 2008. Multi-objective 

optimisation for optimum allocation in multivariate 

stratified sampling, Survey Methodology 34, 215-222.  

Folks, J.L. and Antle, C.E. 1965. Optimum allocation of 

sampling units to the strata when there are r responses of 

interest. Journal of American Statistical Association 60, 

225-233. 

Geary, R.C. 1949. Sampling methods applied to Irish 

agricultural statistics. Technical Series, Central 

Statistical office, Dublin. 

Ghosh, S.P. 1958. A note on stratified random sampling 

with multiple characters. Calcutta Statistical Association 

Bulletin 8, 81-89. 

Jahan, N., Khan, M.G.M. and Ahsan, M.J. 1994. A 

generalized compromise allocation. Journal of the 

Indian Statistical Association 32, 95-101. 

Jahan, N. & Ahsan, M.J. 1995. Optimum allocation using 

separable programming. Dhaka University Journal of 
Science 43, 157-164.  

Jahan, N., Khan, M.G.M. and Ahsan, M.J. 2001. Optimum 

compromise allocation using dynamic programming. 

Dhaka University Journal of Science 49, 197-202. 

Khan, M.G.M., Ahsan, M.J. and Jahan, N. 1997. 

Compromise Allocation in Multivariate Stratified 

Sampling: An Integer Solution. Naval Research 

Logistics 44, 69-79. 

Khan, M.G.M., Khan, E.A. and Ahsan, M.J. 2003. An 

optimal multivariate stratified sampling design using 

dynamic programming. Australian & New Zealand J. 

Statist 45, 107-113. 

Khan, M.G.M., Khan, E.A. and Ahsan, M.J. 2008. 

Optimum allocation in multivariate stratified sampling 

in presence of non-response. Journal of Indian Society of 

Agricultural  Statistics 62, 42-48. 

Khan, M.G.M., Maiti, T. and Ahsan, M.J. 2010. An 
optimal multivariate stratified sampling design using 

auxiliary information: an integer solution using goal 

programming approach. Journal of Official Statistics 26, 

695-708. 

Khowaja, S., Ghufran, S. and Ahsan, M.J. 2011. 

Estimation of population means in multivariate stratified 

random sampling. Communication in Statistics- 

Simulation and Computation 40, 710-718. 

Kokan, A.R. and& Khan, S.U. 1967. Optimum allocation n 

multivariate surveys: An analytical solution. Journal of 

Royal Statistical Society B 29, 115-125. 

Kozak, M. 2006. On sample allocation in multivariate 

surveys. Communication in Statistics-Simulation and 

Computation 35, 901-910. 

LINGO User’s Guide 2001. published by Lindo Systems 

Inc., 1415 North Dayton Street, Chicago, Illinois-60622 

(USA). 
Neyman, J. 1934. On the two different aspects of the 

representative method: The method of stratified 

sampling and the method of purposive  selection. 

Journal of Royal Statistical Society 97, 558-625. 

Peter, J.H. and Bucher (Undated). The 1940 section 

sample survey of crop aggregates in Indiana and Iowa. 

U.S., Dept. of Agriculture. 

Schittkowski, K. 1985-86. NLPQL: A FORTRAN 

subroutine solving constrained nonlinear programming 

problems. Annals of Operations Research 5, 485-500.  

Singh S. 2003 Advanced Sampling Theory with 

Application, Vol.II, Netherland: Kluwer Academic 

Publishers, Dordrecht. 

Stuart, A. 1954. A simple presentation of optimum 

sampling results, Journal of Royal Statistical Society, B 

16, 239-241. 

 



39                                                                                                            Shazia Ghufran et al. : A multiple response stratified 

 

Sukhatme, P. V., Sukhatme, B. V., Sukhatme, S. and 

Ashok, C. 1984. Sampling Theory of Surveys with 

Applications, 3
rd

 ed., Iowa State University Press, Ames, 

Iowa and Indian Society of Agricultural Statistics, New 

Delhi. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yates, F. 1960. Sampling Methods for Censuses and 

Surveys. Charles Griffin   and Co., London, third edition.  

 

Correspondence to : Shazia Ghufran 

E. mail:  itsshaziaghufran@gmail.com 

 

http://www.publish.csiro.au/journals/spjnas 

mailto:itsshaziaghufran@gmail.com



