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Considerations about biochar pre-treatment for analysis of

carbonaceous surfaces

Acid-washing was chosen as possible biochar pre-treatment. Acid-washing is a
key step for analysing the oxygen-containing surface functionalities by
potentiometric titration, a methodology applied for studying soil organic matter
(Cooke et al. 2006; Lopez et al. 2008). Acid-washing allows a gentle acidification
that provides a carbonaceous surface free of inorganic cations and anions, except
for H* (Cooke et al. 2006). In this study, concentrated nitric acid was used, which
could affect biochar surfaces (Chen and Wu 2004) by introducing structures
containing N—O bonds and/or altering surface area. However, a harsh acid attack
was avoided by using low acid concentration, by working always at room
temperature and also by limiting contact time of biochar with acid solution.
Consequently, neither a major surface change nor any production of additional

black carbon (Kuhlbusch 1995) were expected.
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Fig. S1. X-ray photoelectron spectra of the O 1s region for both untreated

(continuous line) and acid-washed (dashed line) biochar from pine, poplar

and willow produced at contrasted HHT. The optimum fitting was
obtained by resolving two peaks: (1) O double bounded to C (C=0) groups
(carbonyl, carboxyl) (=532.0 eV); and (i1) singly bonded O (-O-) in C-O
groups in esters, ethers and oxygen atoms in hydroxyls (=533.7 eV). The
latter peak could include some contribution of chemisorbed O and water,

not resolved as individual peak (Biniak et al. 1997; Nahil and Williams

2012). Other differences (untreated vs. acid-washed biochar) are

mentioned in the manuscript.
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Fig. S2. Derivative thermogravimetric (DTG) curve for both untreated and acid-
washed biochar produced from poplar at 550 °C (PO-550). x- and y-axes
scales are the same for both curves. Thermal analysis is described

elsewhere (Calvelo Pereira et al. 2011; Sevilla and Fuertes 2010).



Table S1. Assignments of peaks and bands in FTIR spectra, indicating functional

groups associated.

Absorbance, Assignation References

cm!

3800 — 3300 Broad overlap band of vibration of =~ Bandosz and Petit (2009); Petit et al.
0O-H in C-OH or water (2009)

~2960 asymmetric and symmetric C-H Biniak et al. (1997); Elizalde-Gonzalez
stretching vibrations in aliphatic — et al. (2007); Nguyen et al. (2008);
CH, —-CHs, —CH3, (1999)

2850 asymmetric and symmetric C-H Biniak et al. (1997); Nguyen et al.
stretching vibrations in aliphatic — (2008); Pradhan and Sandle (1999)
CH, —CHz, —CH3,

1600 — 1580 aromatic ring stretching; highly Moreno-Castilla et al. (2000); Pradhan
conjugated carbonyl groups (C=0) and Sandle (1999)

1460 — 1470 O-H deformation in carboxyl Biniak et al. (1997); Moreno-Castilla et
groups; C-H bending vibrations al. (2000)

1430 — 1410 COOH and CHO stretching; as Chun et al. (2004); Elizalde-Gonzalez et
broad band, OH bound typical of al. (2007)
cellulose

~ 1370 C—C in aromatic rings Francioso et al. (2011)

~ 1310 syringyl ring with C-O stretching Wang et al. (2009)

1070 — 1060 C-O vibrations; hydroxyl groups Elizalde-Gonzalez et al. (2007); Petit et

al. (2009)

~ 870 Carbonate ion Tatzber et al. (2007)

830 — 820 aromatic CH out of plane Artz et al. (2008)

~ 785 CH out-of-plane aromatic bending  Francioso et al. (2011)

~ 720 Carbonate ion Tatzber et al. (2007)




Table S2. Amount of oxygenated acidic functional groups (mmol kg™, determined by
Boehm titration) of untreated biochars from pine, poplar and willow produced at

contrasted HHT.

Sample Feedstock HHT Strong acid Moderately acid Weak acid
fraction #  and Lactone fraction B fraction ©
°C (mmol kg-1) (mmol kg-1) (mmol kg-1)
PI-400 Pine 400 10.1 69 465
PO-400 Poplar 0.2 126 941
WI-400  Willow 0.0 158 813
PI-550 Pine 550 8.1 10 21
PO-550 Poplar 0.2 22 179
WI-550  Willow 0.0 27 295

A mainly carboxylic acids; B low pKa phenols and hydrolysis of lactones; ¢ mainly high pKa phenols.



Table S3. Distribution of carbon (C 1s), oxygen (O 1s) and nitrogen (N 1s) moieties (at.%, obtained from XPS analysis) for untreated

and acid-wahsed biochars from pine, poplar and willow produced at contrasted HHTp.

Element C O N
Energy, eV 285.0 286.5 288.0 289.2 290.8 293.1 531.8 532.8 533.6 399.0 400.9
Assignment ClsI Ci1sII C1slIII C1s1V C1lsV C1sVI O1lsI O1sIb O1sII NislI Ni1sII
Untreated  Feedstock HO%T C.C,C=C  C-OR C=0  COOR CaCO3/rx - C=0 C=0  -O—  ~pyridine Quaternary N
PI-400 Pine 200 633 156 2.6 15 0.5 0.0 2.0 00 120 0.3 05
PO-400 Poplar 649 128 25 1.9 1.0 0.0 5.8 0.0 101 0.3 0.7
WI-400 Willow 583 179 2.8 2.9 1.0 0.0 5.7 0.0 107 0.4 11
PI.550 Pine 550 75.3 8.4 2.6 16 11 0.0 43 0.0 6.1 0.2 0.4
PO-550 Poplar 2.7 9.2 2.3 16 13 0.0 5.5 0.0 6.5 0.4 0.6
WI-550 Willow 66.0 117 1.9 1.0 4.0 1.3 6.2 0.0 6.8 0.5 0.6
Acid-washed
PI-400 Pine 200 573 18.1 2.9 18 25 0.7 138 00 1.1 01 0.8
PO-400 Poplar 621  14.3 2.8 2.3 1.3 0.0 5.2 0.0  10.9 0.2 1.0
WI-400 Willow 58.8 174 2.9 9.4 0.8 0.0 4.9 0.0 113 0.4 11
PI.550 Pine 550 682 118 2.1 1.3 3.4 1.6 1.2 6.1 3.6 0.2 0.5
PO-550 Poplar 647 131 2.9 15 3.0 2.0 1.9 7.0 3.6 0.3 0.8
WI-550 Willow 686 120 2.3 1.9 1.2 0.0 5.3 0.0 7.4 0.4 0.8
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