Assessment of the surface chemistry of wood-derived biochars using wet chemistry, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy

R. Calvelo Pereira^{A,C}, M. Camps Arbestain^A, M. Vazquez Sueiro^A and J. A. Maciá-Agulló^B

^ANew Zealand Biochar Research Centre, Soil and Earth Sciences Group, Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.

^BInstituto Universitario de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain.

^CCorresponding author. Email: R.Calvelopereira@massey.ac.nz

Considerations about biochar pre-treatment for analysis of carbonaceous surfaces

Acid-washing was chosen as possible biochar pre-treatment. Acid-washing is a key step for analysing the oxygen-containing surface functionalities by potentiometric titration, a methodology applied for studying soil organic matter (Cooke *et al.* 2006; López *et al.* 2008). Acid-washing allows a gentle acidification that provides a carbonaceous surface free of inorganic cations and anions, except for H⁺ (Cooke *et al.* 2006). In this study, concentrated nitric acid was used, which could affect biochar surfaces (Chen and Wu 2004) by introducing structures containing N–O bonds and/or altering surface area. However, a harsh acid attack was avoided by using low acid concentration, by working always at room temperature and also by limiting contact time of biochar with acid solution. Consequently, neither a major surface change nor any production of additional black carbon (Kuhlbusch 1995) were expected.

Fig. S1. X-ray photoelectron spectra of the O 1s region for both untreated (continuous line) and acid-washed (dashed line) biochar from pine, poplar and willow produced at contrasted HHT. The optimum fitting was obtained by resolving two peaks: (i) O double bounded to C (C=O) groups (carbonyl, carboxyl) (≈532.0 eV); and (ii) singly bonded O (-O-) in C-O groups in esters, ethers and oxygen atoms in hydroxyls (≈533.7 eV). The latter peak could include some contribution of chemisorbed O and water, not resolved as individual peak (Biniak *et al.* 1997; Nahil and Williams 2012). Other differences (untreated vs. acid-washed biochar) are mentioned in the manuscript.

Fig. S2. Derivative thermogravimetric (DTG) curve for both untreated and acidwashed biochar produced from poplar at 550 °C (PO-550). x- and y-axes scales are the same for both curves. Thermal analysis is described elsewhere (Calvelo Pereira *et al.* 2011; Sevilla and Fuertes 2010).

Table S1. Assignments of peaks and bands in FTIR spectra, indicating functional

groups associated.

Absorbance,	Assignation	References
cm ⁻¹		
3800 - 3300	Broad overlap band of vibration of O-H in C-OH or water	Bandosz and Petit (2009); Petit <i>et al.</i> (2009)
≈2960	asymmetric and symmetric C-H stretching vibrations in aliphatic – CH, –CH ₂ , –CH ₃ ,	Biniak <i>et al.</i> (1997); Elizalde-González <i>et al.</i> (2007); Nguyen <i>et al.</i> (2008); (1999)
2850	asymmetric and symmetric C-H stretching vibrations in aliphatic – CH, –CH ₂ , –CH ₃ ,	Biniak <i>et al.</i> (1997); Nguyen <i>et al.</i> (2008); Pradhan and Sandle (1999)
1600 - 1580	aromatic ring stretching; highly conjugated carbonyl groups (C=O)	Moreno-Castilla <i>et al.</i> (2000); Pradhan and Sandle (1999)
1460 - 1470	O-H deformation in carboxyl groups; C-H bending vibrations	Biniak <i>et al.</i> (1997); Moreno-Castilla <i>et al.</i> (2000)
1430 - 1410	COOH and CHO stretching; as broad band, OH bound typical of cellulose	Chun <i>et al.</i> (2004); Elizalde-González <i>et al.</i> (2007)
pprox 1370	C–C in aromatic rings	Francioso et al. (2011)
pprox 1310	syringyl ring with C-O stretching	Wang <i>et al.</i> (2009)
1070 - 1060	C-O vibrations; hydroxyl groups	Elizalde-González <i>et al.</i> (2007); Petit <i>et al.</i> (2009)
pprox 870	Carbonate ion	Tatzber <i>et al.</i> (2007)
830 - 820	aromatic CH out of plane	Artz <i>et al.</i> (2008)
pprox 785	CH out-of-plane aromatic bending	Francioso et al. (2011)
pprox 720	Carbonate ion	Tatzber <i>et al.</i> (2007)

Table S2. Amount of oxygenated acidic functional groups (mmol kg⁻¹, determined by Boehm titration) of untreated biochars from pine, poplar and willow produced at contrasted HHT.

Sample	Feedstock	HHT °C	Strong acid fraction ^A (mmol kg ⁻¹)	Moderately acid and Lactone fraction ^B (mmol kg ⁻¹)	Weak acid fraction ^C (mmol kg ⁻¹)
PI-400	Pine	400	10.1	69	465
PO-400	Poplar		0.2	126	941
WI-400	Willow		0.0	158	813
PI-550	Pine	550	8.1	10	21
PO-550	Poplar		0.2	22	179
WI-550	Willow		0.0	27	295

^A mainly carboxylic acids; ^B low pK_a phenols and hydrolysis of lactones; ^C mainly high pK_a phenols.

1 Table S3. Distribution of carbon (C 1s), oxygen (O 1s) and nitrogen (N 1s) moieties (at.%, obtained from XPS analysis) for untreated

Element			С						0			N	
Energy, eV			285.0	286.5	288.0	289.2	290.8	293.1	531.8	532.8	533.6	399.0	400.9
Assignment			$C \ 1s \ I$	C 1s II	C 1s III	C 1s IV	C 1s V	C 1s VI	O~1s~I	O~1s Ib	O 1s II	m N~1s~I	m N~1s~II
Untreated	Feedstock	HHT °C	C-C, C=C	C-OR	C=O	COOR	CaCO3/π-π	π-π	C=O	C=O	-0-	≈pyridine	Quaternary N
PI-400	Pine	400	63.3	15.6	2.6	1.5	0.5	0.0	4.0	0.0	12.0	0.3	0.5
PO-400	Poplar		64.9	12.8	2.5	1.9	1.0	0.0	5.8	0.0	10.1	0.3	0.7
WI-400	Willow		58.3	17.9	2.8	2.2	1.0	0.0	5.7	0.0	10.7	0.4	1.1
PI-550	Pine	550	75.3	8.4	2.6	1.6	1.1	0.0	4.3	0.0	6.1	0.2	0.4
PO-550	Poplar		72.7	9.2	2.3	1.6	1.3	0.0	5.5	0.0	6.5	0.4	0.6
WI-550	Willow		66.0	11.7	1.9	1.0	4.0	1.3	6.2	0.0	6.8	0.5	0.6
Acid-washed													
PI-400	Pine	400	57.3	18.1	2.9	1.8	2.5	0.7	4.8	0.0	11.1	0.1	0.8
PO-400	Poplar		62.1	14.3	2.8	2.3	1.3	0.0	5.2	0.0	10.9	0.2	1.0
WI-400	Willow		58.8	17.4	2.9	2.4	0.8	0.0	4.9	0.0	11.3	0.4	1.1
PI-550	Pine	550	68.2	11.8	2.1	1.3	3.4	1.6	1.2	6.1	3.6	0.2	0.5
PO-550	Poplar		64.7	13.1	2.2	1.5	3.0	2.0	1.9	7.0	3.6	0.3	0.8
WI-550	Willow		68.6	12.0	2.3	1.9	1.2	0.0	5.3	0.0	7.4	0.4	0.8

2	and acid-wahsed bio	ochars from pine	, poplar and willow	produced at c	ontrasted HHTp.
_		· · · · · · · · · · · · · · · · · · ·		r	

3

4

References

Artz RRE, Chapman SJ, Jean Robertson AH, Potts JM, Laggoun-Défarge F, Gogo S, Comont L, Disnar J-R, Francez A-J (2008) FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. *Soil Biology and Biochemistry* 40(2), 515-527.

Bandosz TJ, Petit C (2009) On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. *Journal of Colloid and Interface Science* **338**(2), 329-345.

Biniak S, Szymański G, Siedlewski J, Światkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. *Carbon* **35**(12), 1799-1810.

Calvelo Pereira R, Kaal J, Camps Arbestain M, Pardo Lorenzo R, Aitkenhead W, Hedley M, Macías F, Hindmarsh J, Maciá-Agulló JA (2011) Contribution to characterisation of biochar to estimate the labile fraction of carbon. *Organic Geochemistry* **42**(11), 1331-1342.

Chen JP, Wu S (2004) Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties. *Langmuir* **20**(6), 2233-2242.

Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and Sorptive Properties of Crop Residue-Derived Chars. *Environmental Science & Technology* **38**(17), 4649-4655.

Cooke JD, Hamilton-Taylor J, Tipping E (2006) On the Acid–Base Properties of Humic Acid in Soil. *Environmental Science & Technology* **41**(2), 465-470.

Elizalde-González MP, Mattusch J, Peláez-Cid AA, Wennrich R (2007) Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms. *Journal of Analytical and Applied Pyrolysis* **78**(1), 185-193.

Francioso O, Sanchez-Cortes S, Bonora S, Roldán ML, Certini G (2011) Structural characterization of charcoal size-fractions from a burnt Pinus pinea forest by FT-IR, Raman and surface-enhanced Raman spectroscopies. *Journal of Molecular Structure* **994**(1–3), 155-162.

Kuhlbusch TAJ (1995) Method for Determining Black Carbon in Residues of Vegetation Fires. *Environmental Science & Technology* **29**(10), 2695-2702.

López R, Gondar D, Iglesias A, Fiol S, Antelo J, Arce F (2008) Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. *European Journal of Soil Science* **59**(5), 892-899.

Moreno-Castilla C, López-Ramón MV, Carrasco-Marín F (2000) Changes in surface chemistry of activated carbons by wet oxidation. *Carbon* **38**(14), 1995-2001.

Nahil MA, Williams PT (2012) Surface chemistry and porosity of nitrogen-containing activated carbons produced from acrylic textile waste. *Chemical Engineering Journal* **184**(0), 228-237.

Nguyen B, Lehmann J, Kinyangi J, Smernik R, Riha S, Engelhard M (2008) Long-term black carbon dynamics in cultivated soil. *Biogeochemistry* **89**(3), 295-308.

Petit C, Seredych M, Bandosz TJ (2009) Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. *Journal of Materials Chemistry* **19**(48), 9176-9185.

Pradhan BK, Sandle NK (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. *Carbon* **37**(8), 1323-1332.

Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. *Chemical Physics Letters* **490**(1-3), 63-68.

Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek M (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. *Environmental Chemistry Letters* **5**(1), 9-12.

Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. *Biotechnology Advances* **27**(5), 562-567.