Supplementary material for

Quantity and biodegradability of dissolved organic matter released from sequentially leached soils, as influenced by the extent of soil drying prior to rewetting

Tihana Vujinović^{A,B,D}, *Timothy J. Clough*^A, *Denis Curtin*^B, *Esther D. Meenken*^C, *Niklas J. Lehto*^A and *Michael H. Beare*^B

^ADepartment of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch, New Zealand.

^BThe New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand.

^CLincoln Science Centre, AgResearch Ltd, Private Bag 4749, Christchurch, New Zealand.

^DCorresponding author. Email: tihana.vujinovic@lincolnuni.ac.nz

Table S1: Multivariate linear regression for SUVA₂₅₄ as a function of DOC concentration (Fig. 5) in leachates from an arable and a grassland soil at different θ_g before rewetting

Model: $y = y_0 + ax$, where $y_0 =$ intercept and a = slope ($R^2 = 0.63$ and 0.85 for arable and grassland respectively)

		Intercept		Slope	
Land use	θ_g treatment	Estimate	<i>P</i> -value	Estimate	<i>P</i> -value
Arable	FC	-1.86	0.388	15.96	< 0.001
	15%	30.96	< 0.001	-51.21	< 0.001
	8%	9.21	< 0.001	-8.88	< 0.001
	AD	6.77	0.003	-3.29	< 0.001
Grassland	FC	9.29	< 0.001	-3.28	< 0.001
	15%	9.07	0.677	-5.21	0.022
	8%	7.01	< 0.001	-3.41	0.884
	AD	5.52	< 0.001	-1.17	0.003

Table S2: Multivariate linear regression for DOC biodegradability (DOC- C_{min}) as a function of DOC concentration (Fig. 8*a*) in leachates from a grassland soil at different θ_g before rewetting

		Intercept		Slope	
Land use	θ_g treatment	Estimate	<i>P</i> -value	Estimate	<i>P</i> -value
Grassland	FC	271.1	< 0.001	-222	< 0.001
	15%	186.1	< 0.001	-124.4	0.001
	8%	209.9	0.001	-154.6	0.019
	AD	174.1	< 0.001	-22.1	< 0.001

Model: $y = y_0 + ax$, where $y_0 =$ intercept and a = slope ($R^2 = 0.79$)

Fig. S1. UV absorbance at 254 nm of the pore volumes leached from an arable (*a*) and a grassland soil (*b*) at their designated θ_g . l.s.d. ($\alpha = 0.05$) = 0.28 and 0.22. FC, field capacity; AD, air dry; PV, pore volume.