Supplementary material for

Variations of belowground C and N cycling between arbuscular mycorrhizal and ectomycorrhizal forests across China

Jiwei Li^{A,B}, Zhouping Shangguan^{A,B,C}, Lei Deng^{A,B,C,D}

^AState Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and

Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling,

Shaanxi 712100, China.

^BUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^CInstitute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100,

China.

^DCorresponding author: Email: leideng@ms.iswc.ac.cn

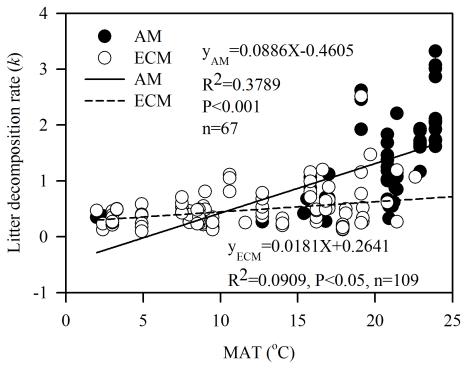


Figure S1 The linear regression relationship between litter decomposition rate (k) of two mycorrhizal types (arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM)) and annual mean temperature (MAT).

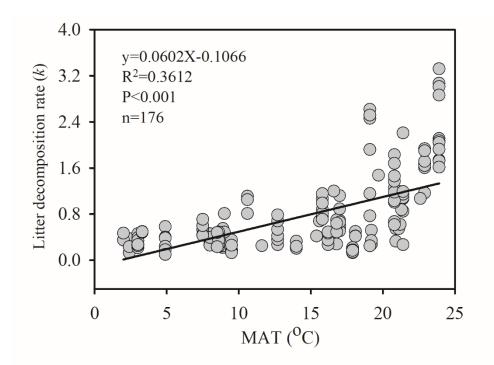


Figure S2 The linear regression relationship between litter decomposition rate (k) of two mycorrhizal types and annual mean temperature (MAT).

Table S1 Multiple linear regression relationship between every variable and climate factors (MAP and MAT) in two forest mycorrhizal types: arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM). The equation's regression coefficient is standardized. R^2 indicates coefficient of determination (equation's explained ratio).

Dependent variable	AM			ECM			
	n	Equations	R ²	n	Equations	\mathbb{R}^2	
Litter input (Mg ha ⁻¹ year ⁻¹)	49	Y=0.54MAT+0.37MAP	0.620***	116	Y=0.25MAP-0.01MAT	0.251*	
Forest floor biomass (Mg ha ⁻¹ year ⁻¹)	15	Y=0.94MAP-0.34MAT	0.322	62	Y=0.13MAP+0.05MAT	0.166	
Litter C (g kg ⁻¹)	62	Y=0.07MAT+0.05MAP	0.112	96	Y=0.18MAP-0.01MAT	0.177	
Litter N (g kg ⁻¹)	76	Y=0.35MAT-0.40MAP	0.262	124	Y=-0.13MAT-0.08MAP	0.194	
Litter C/N	60	Y=0.34MAP-0.30MAT	0.289	80	Y=0.11MAT+0.02MAP	0.131	
Litter lignin (g kg ⁻¹)	41	Y=0.24MAP+0.23MAT	0.444*	49	Y=0.29MAP-0.05MAT	0.259	
Litter lignin/N	35	Y=0.22MAP+0.10MAT	0.305	46	Y=-0.11MAT-0.01MAP	0.109	
Litter cellulose (g kg ⁻¹)	22	Y=0.44MAT+0.12MAP	0.546*	27	Y=-0.59MAP+0.41MAT	0.346	
Litter decomposition rate (k)	67	Y=0.65MAT-0.05MAP	0.616**	109	Y=0.45MAP-0.06MAT	0.404***	
Litter annual weight loss (%)	33	Y=0.87MAP-0.43MAT	0.607**	40	Y=0.39MAP-0.13MAT	0.364	
Soil OC (g kg ⁻¹)	162	Y=0.55MAP+0.075MAT	0.613***	240	Y=0.04MAT-0.08MAP	0.069	
Soil TN (g kg ⁻¹)	168	Y=0.65MAP-0.07MAT	0.589***	271	Y=-0.05MAT-0.08MAP	0.119	
Soil C/N	168	Y=0.12MAP-0.05MAT	0.077	274	Y=0.01MAT-0.07MAP	0.066	
Soil DOC (mg kg ⁻¹)	14	Y=0.46MAP-0.05MAT	0.476	34	Y=-0.14MAT+0.13MAP	0.221	
Soil NH4 ⁺ -N (mg kg ⁻¹)	21	Y=0.72MAP-0.43MAT	0.461	20	Y=-0.66MAT+0.69MAP	0.561*	
Soil NO ₃ ⁻ -N (mg kg ⁻¹)	21	Y=0.43MAT-0.10MAP	0.362	20	Y=-0.499MAT+0.568MAP	0.448	

Soil N_{org} (g kg ⁻¹)	21	Y=0.24MAP-0.03MAT	0.244	20	Y=-0.27MAT-0.05MAP	0.278
Soil $N_{inorg} (mg kg^{-1})$	21	Y=0.64MAP-0.26MAT	0.455	20	Y=-0.65MAT+0.69MAP	0.559*
Soil N _{org} /N _{inorg}	21	Y=-0.37MAT-0.18MAP	0.404	20	Y=-0.21MAT-0.11MAP	0.239
Soil MBC (mg kg ⁻¹)	64	Y=0.27MAP-0.19MAT	0.447**	71	Y=-0.13MAT+0.01MAP	0.125
Soil MBN (mg kg^{-1})	47	Y=0.54MAP+0.23MAT	0.737***	34	Y=-1.56MAT-0.05MAP	0.362
Soil MBC/MBN	47	Y=-0.21MAT-0.19MAP	0.391*	34	Y=0.02MAT+0.22MAP	0.231
Soil C mineralization (Mg ha ⁻¹ year ⁻¹)	13	Y=0.53MAP-0.33MAT	0.572	13	Y=-0.13MAT+0.26MAP	0.202
Soil respiration (Mg ha ⁻¹ year ⁻¹)	14	Y=1.03MAP+0.42MAT	0.724*	22	Y=0.85MAT+1.46MAP	0.743***
Soil net N mineralization (kg ha ⁻¹ year ⁻¹)	10	Y=0.52MAP-0.40MAT	0.232	12	Y=0.04MAT+0.03MAP	0.062
Soil net nitrification (kg ha ⁻¹ yr ⁻¹)	11	Y=-0.38MAT-0.18MAP	0.412	12	Y=-0.38MAT-0.66MAP	0.642

Note: *** significant at P < 0.001, ** significant at P < 0.01, * significant at P < 0.05.