10.1071/SR21097

Soil Research

Supplementary Material

Effects of alpine meadow degradation on nitrifying and denitrifying microbial communities, and N2O emissions on the Tibetan Plateau

Lu Zhang^{A,B}, *Xiangtao Wang*^C, *Jie Wang*^D, *Qian Wan*^D, *Lirong Liao*^{A,B}, *Guobin Liu*^{A,D}, *and Chao Zhang*^{A,D,*} ^AState Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, PR China.

^BUniversity of Chinese Academy of Sciences, Beijing 100049, PR China.

^cDepartment of Animal Sciences, Xizang Agriculture and Animal Husbandry College, Linzhi 860000, PR China.

^DState Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China.

*Correspondence to: Chao Zhang Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, PR China Email: zhangchaolynn@163.com

Gene	Encoded protein	Primer sequence	Sequence (5'-3')	Thermal profile	Reference
amoA- AOA	ammonia	Arch-amoAF	STAATGGTCTGGCTTAGACG	95°C/5min; 35 cycles of	(Francis <i>et al</i> .
	monooxygenase α subunit (Archaea)	Arch-amoAR	GCGGCCATCCATCTGTATGT	95°C/60s, 58°C/30s, 72°C/60s	2005)
amoA- AOB	ammonia	amoA-1F	GGGGTTTCTACTGGTGGT	95°C/5min; 35 cycles of	(Rotthauwe et
	monooxygenase α subunit (Bacteria)	amoA-2R	CCCCTCKGSAAAGCCTTCTTC	95°C/60s, 60°C/30s, 72°C/60s	al. 1997)
nirS	nitrite reductase	Cd3aF	GTSAACGTSAAGGARACSGG	95°C/5min; 35 cycles of	(Palmer et al.
		R3CdR	GASTTCGGRTGSGTCTTGA	95°C/60s, 58°C/30s, 72°C/60s	2012)
nirK	copper-containing nitrite reductase	FlaCu	ATCATGGTSCTGCCGCG	95°C/5min; 35 cycles of	(Hallin and
		R3Cu	GCCTCGATCAGRTTRTGGTT	95°C/60s, 60°C/30s, 72°C/60s	Lindgren 1999)
nosZ	cytochrome cd1- containing nitrite reductase	nosZ-1F	CGYTGTTCMTCGACAGCCAG	95°C/5min; 35 cycles of 95°C/60s, 58°C/30s,	(Henry et al.
		nosZ-1622R	CGSACCTTSTTGCCSTYGCG	72°C/60s	2006)

Table S1. Primer pairs and thermal cycling conditions used for real-time quantitative PCR (qPCR) and amplicon sequencing.

Table S2. Geographical characteristic and plant composition of study sites. ND, non-degraded meadow; LD, lightly degraded meadow; MD, moderately degraded meadow; SD, severely degraded meadow.

Degradation level	Latitude (N)	Longitude (E)	Altitude (m)	Dominant Species
ND	30°45′19″	91°03′23″	4456	Kobresia pygmaea Clarke., Stipa capillacea Keng., Stipa purpurea Griseb., Potentilla saundersiana Royle., Kobresia humilis (C. A. Mey ex Trauvt.) Sergievskaya.
LD	30°43′48″	91°07′41″	4389	Stipa capillacea Keng., Carex montis-everestii Hillebr., Potentilla saundersiana Royle., Potentilla bifurca L.
MD	30°49′31″	91°09′17″	4350	Leontopodium nanum HandMazz., Pleurospermum hedinii Diels., Artemisia wellbyi Hemsl. et Pears. Ex Deasy
SD	30°52′15″	91°12′32″	4348	Leontopodium nanum HandMazz., Artemisia wellbyi Hemsl. et Pears. ex Deasy

	ND	LD	MD	SD
Total coverage	94.20 ± 1.24	83.00 ± 1.55	74.00 ± 1.05	39.40 ± 1.81
The proportion of the grassland productivity (%)	96.70 ± 3.30	69.20 ± 1.88	46.8 ± 1.98	22.8 ± 1.07
The proportion of the plants (%)	65.60 ± 2.84	60.80 ± 3.54	40.20 ± 4.53	26.40 ± 1.03
The height of the plants(cm)	35.20 ± 1.93	24.80 ± 1.71	21.00 ± 1.41	7.00 ± 0.71
MDI	5.97 ± 1.03	23.21 ± 1.41	36.06 ± 0.89	59.67 ± 0.82

Table S3. Vegetation characteristics in four meadows. Values are means \pm standard error (n = 5). ND, non-degraded meadow; LD, lightly degraded meadow; MD, moderately degraded meadow; SD, severely degraded meadow. MDI, meadow degradation index.

Fig. S1. Community composition of (A) AOA, (B) AOB, (C) *nirS*, (D) *nirK*, (E) *nosZ* in four meadows at the class level. ND, non-degraded meadow; LD, lightly degraded meadow; MD, moderately degraded meadow; SD, severely degraded meadow.

Fig. S2. Ordinary least-squares (OLSRM) regression model shows the association between microbial properties, including abundance, richness, diversity and community composition, and N₂O emission potential. The gray shaded area shows the 95% confidence interval of the fit. ND: non-degraded meadow; LD: lightly degraded meadow; MD: moderately degraded meadow; SD: severely degraded meadow.

References

- Francis, CA, Roberts, KJ, Beman, JM, Santoro, AE, Oakley, BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. *Proceedings* of the National Academy of Sciences of the United States of America **102** (41), 14683-14688. doi:10.1073/pnas.0506625102
- Hallin, S, Lindgren, PE (1999) PCR detection of genes encoding nitrile reductase in denitrifying bacteria. Applied and Environmental Microbiology 65 (4), 1652-1657.
- Henry, S, Bru, D, Stres, B, Hallet, S, Philippot, L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. *Applied and Environmental Microbiology* 72 (8), 5181-5189. doi:10.1128/aem.00231-06
- Palmer, K, Biasi, C, Horn, MA (2012) Contrasting denitrifier communities relate to contrasting
 N2O emission patterns from acidic peat soils in arctic tundra. *Isme Journal* 6 (5), 1058-1077. doi:10.1038/ismej.2011.172
- Rotthauwe, JH, Witzel, KP, Liesack, W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammoniaoxidizing populations. *Applied and Environmental Microbiology* 63 (12), 4704-4712. doi:10.1128/aem.63.12.4704-4712.1997