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Abstract. Soil contamination poses substantial risks to human and ecosystem health, justifying the need for accurate
delineation and remediation of contaminated sites. The number of soil samples collected at a site during assessment is
limited by cost and time available for assessment, increasing the potential for misclassification due to insufficient samples.
Using distributions of heavy metals sourced from semivariograms provided in published studies, the first stage of this
study sought to determine how many samples were required for the confidence interval around the mean to be above or
below the Australian guideline value for each specific metal and study. Estimated sample size for assessing mean
contamination across a site ranged from two to four samples; however, some distributions possessed a higher amount of
variation and therefore required more samples. The second stage of the investigation explored sample size requirements
for mapping contaminated sites. Unconditional Gaussian simulations created from published semivariograms were
sampled using 15 different sample sizes, and the samples used to obtain predictions of the simulated distributions. For
each sample, observed (simulated) and predicted (kriged) metal concentrations were classed as being below or exceeding
the guideline values and compared through quantification of the number of misclassifications that occurred. When
mapping a site of 5 km2 or less, uncertainty and misclassification decreased with increasing sample size, stabilising at
around 200 samples; however, the lowest uncertainty occurred at around 500 samples. The study acknowledges this may
be unrealistic and economically inefficient, so in addition to these findings it is worth exploring improvement in other
areas of investigation, such as in the detection and mapping stages.
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Introduction

Soil contamination is a leading global issue and is becoming
more prominent with past and present industrial activity,
increasing population density, and resulting urban expansion
(Andronikov et al. 2000; Lee et al. 2006; Lacarce et al. 2012).
An area is classed as ‘contaminated’ when substances, such as
heavy metals, exceed background concentrations and this is
often due to anthropogenic influences (National Environment
Protection (Assessment of Site Contamination) Measure 1999,
ASC NEPM)). Heavy metals are of particular concern as they
are influenced by human activity and remain in the soil for a
considerable amount of time (Markus and McBratney 1996).
Soil contamination, especially heavy metal contamination, can
have substantial impacts upon human and environmental health
(Helios Rybicka 1996; Mielke et al. 1999; Khan et al. 2008) and
it is therefore crucial that contaminated areas are identified and
managed.

If substances occur above established guideline values at a
test site, there is a need for further investigation and potential
remediation (ASC NEPM; VROM 2000; BC MoE 2014). Site

assessment and remediation is costly, with a report by the NSW
Environment Protection Authority (NSW EPA 2013)
estimating the cost to be AU$100–$200 million per year for
testing and clean-up of contaminated sites. Testing methods
vary depending on the site and contaminant, and are often
determined using an ad hoc approach based on a priori
knowledge of past activities in the area, the site-specific risk
assessment, and the associated conceptual model developed in
the preliminary investigation of the site (ASC NEPM; US EPA
2002a; Glavin and Hooda 2005).

Government organisations may regulate the sampling
conducted by establishing recommended sampling procedures
(VROM 2000; Theocharopoulos et al. 2001). In Europe, where
manydifferent guidelines are established, samplingmethodsmay
instead vary from organisation to organisation (Theocharopoulos
et al. 2001; de Zorzi et al. 2008). Such a variety of methods can
have significant impacts upon the accuracy of analyses and in turn
affect the precision of the remediation process, resulting in
false positive or false negative results (Cattle et al. 2002).
Contaminated site analysis needs to be timely and cost-
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effective, and one way to enhance this is by improving the
sampling scheme, which relates to collection of sufficient
samples and locating them so they identify contamination
levels appropriately.

In Australia, sampling is conducted in the preliminary
investigation and the results used to inform subsequent
detailed investigation (ASC NEPM). Preliminary sampling is
conducted with the purpose of estimating mean contamination
at the site and comparing this, along with the 95% upper
confidence interval, to the developed health investigation
levels (HILs) and if these levels are exceeded, further
investigation is required (ASC NEPM). Further investigation
involves conducting detailed sampling at the site to provide a
better picture or distribution of contaminants, with the number
of samples to collect guided by the conceptual site model and
results of the initial sampling (ASC NEPM).

Delineating contamination at a site can use either a design- or
model-based approach, depending on the purpose of the
investigation (i.e. preliminary or detailed). Design-based, or
probability-based, sampling approaches select points based on
probability and randomisation to predict a mean or another
statistic, whereas model-based approaches, also known as
purposive or judgemental approaches, rely on a model for
predicting means (De Gruijter et al. 2006). Many studies
adopt a model-based, or systematic, sampling scheme where
a grid is selected and samples are taken at set intervals (US EPA
2002b). As a result, the samples are not independent of each
other and will provide a biased variance. In situations in which
we wish to estimate the mean contamination or the 95%
confidence interval, a probabilistic sampling scheme is best
(ASC NEPM; US EPA 2002b).

In contrast, grid-based sampling is highly useful and has
been recommended for mapping and kriging variables (Pettitt
and McBratney 1993). Studies have also complemented grid
designs with shorter scale samples taken so as to model the
short-range spatial variation that may not otherwise be detected
(Lark 2002; Karunaratne et al. 2014). Detecting shorter-range
variation and reducing bias of samples assist in increasing
precision in mapping, thus preventing site misclassification.

Aside from using a suitable sampling scheme, the number of
samples (herein referred to as the ‘sample size’) can affect the
precision and reliability of contaminated site assessment. Error
may arise from insufficient sampling, or failing to sample in
areas where contaminant concentrations are higher (i.e.
‘hotspots’) and in turn increase risk of misclassification
(Tiller 1992; Cattle et al. 2002). Studies have sought to
quantify sample size; however, they have been applied to
assessment of soil properties such as loss on ignition, soil
texture, and pH, rather than specifically for contaminants,
which can be highly variable (McBratney and Webster 1983;
Kerry and Oliver 2004). Past studies have also sought to
determine suitable grid spacing for soil spatial analyses (Chang
etal. 1998;McBratney andPringle 1999);McBratneyandPringle
(1999) used published semivariograms in the analyses. There are
several studies that have conducted sampling at contaminated
sitesandso thequestionarises as towhether itwouldbepossible to
use thesepublishedstudies inaspart of ameta-analysis toestimate
sample size requirements and provide broad guidelines for
investigation.

Many published studies assessing heavy metal distribution
use model-based sample approaches, which, as mentioned
earlier, will have biased variances. There are three general
types of studies available to predict variation at a site: those
that adopt a probabilistic design, those that adopt a systematic
sampling scheme but do not provide a semivariogram, and those
that adopt a systematic sample design and do provide
semivariograms. The latter of these were used throughout the
current study. If summary statistics and variogram parameters
are provided by the study, it is possible to extract an unbiased
variance using a method proposed by Domburg et al. (1994).

By conducting a meta-analysis utilising variogram
parameters from several compiled contamination studies, this
study aimed to: (1) determine the optimal sample size for
estimating mean heavy metal concentration at a site and
calculation of the proportion of the site exceeding the set
guideline value, and (2) determine suitable sample sizes for
mapping heavy metal distribution by simulating the spatial
variation described by the semivariograms from each of the
studies. The outcomes of this study will provide broad
indications of the range of samples required for
contaminated site assessment, which may improve accuracy
of decision making and improve efficiency of assessment.

Methods

Database compilation

A literature search was performed to find peer-reviewed research
on the spatial variationofheavymetal contaminants. Studieswere
chosen if they provided experimental semivariograms, topsoil
samples (up to 10 cm) and if the study area was less than 5 km2.
The studies chosen covered a variety of land uses including
industrial, agricultural, mine sites, and residential areas
(Table 1). Data were obtained for a range of heavy metals,
with the most commonly provided being lead (Pb), zinc (Zn),
andcadmium(Cd), andso thesewereused fordeterminingsample
sizes for mean estimates of concentrations and for mapping
contaminant distribution.

The majority of the studies added to the database
used logarithmic transformations on skewed heavy metal
concentrations and the transformed values were used in favour
of raw values for later analyses. Some studies used transformed
values in their analyses, but only provided untransformedmeans;
to overcome this, the raw means were transformed using an
equation derived from arithmetic moments and the lognormal
distribution:

mln ¼ ln
m2
rawffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
raw þ sraw

p
 !

ð1Þ

where mln is the normalised mean, mraw is the skewed (raw)
mean, and sraw is the skewed standard deviation.

Throughout this study, heavy metal concentrations were
compared with the most conservative HILs provided by the
National Environment Protection (Assessment of Site
Contamination) Act 1994 (Cth), which are used in Australia
for contaminated site assessment. Guideline values for Pb, Zn,
and Cd are 300 mg kg–1, 7400 mg kg–1 and 20 mg kg–1

respectively.
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After compiling the variogram database we considered two
situations: one where we wish to identify how many samples are
required to estimatewhether themean contaminant concentration
is below or above a guideline value, and another for mapping
the concentration of the contaminant to identify whether the
concentration at each spatial location was above or below the
guideline value.

Mean contamination across a site

Unbiased variance and sample sizes
Equation 2 was used to calculate the 95% confidence interval

(CI) around the mean. Given an estimate of the mean (�y) or the
variance (s2), the sample size (n) impacts on the width of CI due

to the tcrit and the standard error of the mean,
ffiffiffi
s2
n

q
, decreasing

with increasing sample size:

95%CI ¼ �y� t0:025crit �
ffiffiffiffi
s2

n

r
ð2Þ

It was hypothesised that the mean would not be equal to the
guideline value, whereas if the null hypothesis were proven true,
the mean would be equal to the guideline value. Therefore, if the
95% confidence interval did not overlap with the contaminant
guideline value, the null hypothesis would be rejected.

However, to be able to calculate the required sample size, it
needs to be ensured that the variances were unbiased. Many of
the selected studies used systematic sample designs, for
example a grid or transect design (Table 1). Since the
designs had no probabilistic component the estimated
variances may be biased. To extract an unbiased estimate of
the variance for each study included in the meta-analysis, the
method established by Domburg et al. (1994) was implemented

(Eqn 3). This method estimates the variance of the sample mean
of an area using the semivariogram parameters:

VpðzSIÞ ¼
�g
n

ð3Þ

where �g is the mean semivariance calculated using variogram
parameters provided by the study and n is the sample size used
in the study.

Calculation of the mean semivariance (�g) was accomplished
by simulating a matrix of 1000 sets of random pairs of
coordinates within a simulated study area in the shape of a
square and equal in size to each published study. All analyses
were performed using R (R Core Team 2016).

Once the mean semivariance was calculated for each study,
unbiased variance across each study area was obtained using
Eqn 3. Subsequently, sample size requirements were quantified
using Eqn 2, with a tcrit of 0.025, the degrees of freedom (n � 1)
obtained in each study, and substituting the newly calculated
unbiased variance of the mean into the equation. The sample
size was increased until the 95% CI was above or below the
guideline value.

Proportion of contaminated samples
Although the mean and confidence interval may be under

the guideline value, some part of the site could still be
contaminated. We estimated this for each study based on the
cumulative upper probability above the guideline value using
the t-distribution in GENSTAT 16 (VSN International Ltd 2013),
based upon the optimal sample size.

Sample size for mapping contaminated sites

Simulation, sampling, and prediction
As a case study, data from a subset of studies quantifying Pb

were selected for simulation. Unconditional Gaussian

Table 1. Summary of location, land use, and sampling designs for each chosen study

Study Country Land use Sampling method

Assadian et al. (1998) Mexico and USA Agriculture (alfalfa) Parallel transects along canal
Atteia et al. (1994) Switzerland Agriculture Square grid and nesting
Bourennane et al. (2006) France Agricultural/wastewater

irrigation plane
Square grid

Burgos et al. (2006) Spain Mine Grid (20 � 50 m), 12 subplots (7 � 8 m)
Chang et al. (1998) UK Agriculture Grid (60 � 70 m rectangles)
Ersoy et al. (2008) UK Agriculture (grazing land) Grid (1, 5, 10 m regular intervals)
Ferreira da Silva et al. (2004) Portugal Mine Grid (100 � 100 m)
Lin et al. (2001) Taiwan Agriculture (rice paddies) Regular grid
Shi et al. (2008) China Agriculture (rice paddies) 4-km intervals along different locations on

the plain and valley
Simasuwannarong et al.

(2012)
Thailand Agricultural, industrial, urban Stratified random

Wei and Yang (2010) China Mining/smelter Grid (0.5–1 km2 cells), 5-m2 subplots
Weindorf et al. (2013) Romania Mining/smelter, agriculture Random, but sampling variety of land uses
Yang et al. (2009) China Agricultural, urban Irregular grid, with five subsamples at each

point
Zhao et al. (2010) China E-waste recycling areas,

agricultural (rice paddies)
Randomised, but taken over rice paddies
only

Zupan et al. (2000) Slovenia Industrial, forest Systematic sampling design, two grids: one
general and the other lowland where main
sources of pollution are
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simulation incorporating variogram parameters from each study
was used to simulate contaminant distribution via the ‘gstat’
package in R (Pebesma 2004). A total of 1000 simulations were
created for each study, with the set grid area closely resembling
the original study area to maintain proportions.

From these simulated fields, the sample design consisted of
90% of locations being on a grid and the remaining 10% taken a
short distance from randomly selected grid points. The latter
portion of samples would provide short range samples for
variogram modelling, similar to the approach suggested by
Lark (2002). The range of sample sizes tested included 40,
60, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450,
and 500 samples. Each tested sample size was used to map soil
contamination using ordinary kriging for mapping onto the grid.

Prediction quality
The simulated grid values were assigned a class based on

whether the Pb concentration exceeded (thus classed as
‘contaminated’) or was less than the guideline value (and so
classed as ‘uncontaminated’). These classifications of the
simulated values formed the ‘observed’ classes, or ‘truth’.
The predicted values underwent a similar process; however,
the guideline values were compared with the prediction
intervals of each point, and used an additional classification
of ‘high uncertainty’ where the guide value lay within the
prediction interval (Fig. 1). The allocated classes of
corresponding point locations within the observed and
predicted datasets were then compared, and if they matched,
they were assigned the class of ‘correct’, whereas if they
mismatched, they were classed as ‘error’ (Including Type I
or II); if the prediction interval indicated high uncertainty, the
point was classed as ‘uncertain’.

Results

Exploratory data analysis and data compilation

The compiled studies incorporated a variety of sample sizes,
mean concentrations, and semivariogram parameters
(Table 2). Sample sizes ranged from 48 to 665 samples and
these were taken over areas from 0.0004 to 3500 km2. Some
studies presented mean values as logged, others presented the

raw values and logged them before variogram analyses, and
some used the raw values without transformation. Variogram
models included linear, spherical, double spherical, Gaussian,
exponential, and stable. The majority of nugget values were less
than 1.0; however, some studies obtained a nugget semivariance
of over 151000 as the data were not transformed before analysis.
Distance parameters were often related to area size (i.e. the
larger the area, the larger the distance parameter), yet this was
not always the case. Mean values for many of the studies
exceeded the most conservative ASC NEPM guideline
values (20 mg kg–1 for Cd, 6000 mg kg–1 for Cu, and
300 mg kg–1 for Pb).

Sample size for mean contamination

The predicted sample sizes required for each study were very
different to the sample sizes actually used (Table 3); this is
justified as the purpose of these studies was to map
contamination rather than estimate mean content. More
samples were required for Pb compared with Cd and Cu.
Overall, the majority of sample sizes required to determine
whether the mean concentration was significantly different from
the guideline value was four samples or less, which is quite a
small number of samples in relation to the size of the study area.
Some studies required a much greater sample size, such as that
by Shi et al. (2008) for Cd, which required 108 samples; and the
study by Bourennane et al. (2006), which required 122 samples
to determine whether Pb exceeded the guideline value. Key
drivers of the sample size requirement were the variability and
how close the mean was to the guideline value.

Although we could calculate the mean and show that it was
significantly greater or less than the guideline value, some of the
sitemay still contain concentrations that exceed the guideline. To
detect whether or not areas of elevated concentrations were
missed, the proportion of each area exceeding the guideline
was calculated based on the estimated sample size
(Table 3). Overall, the proportion of each site exceeding the
guidelinevalues forCdandCuwere very low, except for the study
byShietal. (2008)observingCd.Therewere twostudies inwhich
>90% of the site exceeded the guideline value for Pb; however, it
was studies in which the mean did not exceed the guideline but
showed a proportion of values exceeding the guideline thatwould

Predicted concentration

Predicted 95 PI
< guide value

Uncontaminated High uncertainty Contaminated

Predicted 95 PI
> guide value

Guide value
within 95 PI

Fig. 1. Classification guide for predictions (adapted from Johnson et al. (2017)). PI refers to prediction
intervals.
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beatgreatest riskofmisclassification.Contaminant distribution is
most often heterogeneous and obtaining a mean value does not
provide an accurate representation, increasing risk of
misclassification. More accurate representation could be
obtained by mapping contamination at a site.

Sample size for mapping contamination

A subset of study parameters was taken from the Pb dataset and
used in a simulation exercise to determine optimal sample size
for mapping. Study area size (and therefore size of simulated
fields) varied among studies, and as a result, grid intervals also

varied to ensure the total number of grid points in the simulated
fields remained consistent (Table 4).

Comparison between observed (simulated) and predicted
classifications indicated that increasing sample size increased
the number of points classified as correct while decreasing the
amount of uncertainty (Fig. 2). Increasing sample size also
resulted in an increase in the amount of error; however, the rate
of increase was relatively small (maximum 5% increase
overall). Regardless of sample size, uncertainty of
predictions remained much higher than the number of
samples classified correctly, where the majority of the
studies had >50% of points classed as uncertain. The rate of

Table 2. Summary of parameters from each compiled study for each metal. Mean is as provided in original study, transform describes the type of
(if any) transformation used by original study

n, sample size; c0, nugget semivariance; c1, c2, structural semivariance; d1, d2, distance parameters

Metal Study n Area (km2) Mean s.d. Transform Model c0 c1 c2 d1 d2

Cd Atteia et al. (1994) 366 14.5 1.31 0.87 log double spherical 0.01 0.05 114.00 0.03 1436.00
Bourennane et al. (2006) 50 0.15 3.98 2.07 none spherical 1.37 2.00 80.00
Burgos et al. (2006) 48 0.001 4.44 1.16 none linear 0.72 1.77 20.20
Shi et al. (2008) 665 1430 0.19 0.07 log linear 0.02 0.02 37.66
Simasuwannarong et al.

(2012)
130 3522 3.56 2.77 log spherical 0.79 1.28 8949.86

Wei et al. (2009) 106 100 10.34 22.78 log spherical 0.02 0.15 2.64
Weindorf et al. (2013) 69 5.13 7.60 15.10 log Gaussian 0.89 0.00 13953.20
Yang et al. (2009) 100 0.0004 0.15 0.04 log spherical 0.00 0.00 3.28
Zhao et al. (2010) 96 926 0.31 0.38 log Gaussian 0.18 0.44 39.80
Zupan et al. (2000) 119 5 2.1 3.12 log spherical 0.76 1.72 9.50
Zupan et al. (2000) 119 5 2.5 3.89 log spherical 0.30 2.18 9.50

Cu Atteia et al. (1994) 366 14.5 26.40 31.70 log spherical 2.03 0.09 404.00
Bourennane et al. (2006) 50 0.15 173.40 64.72 none spherical 1774.00 1888.00 105.00
Burgos et al. (2006) 48 0.001 119.00 26.60 log linear 0.00 0.01 21.20
Shi et al. (2008) 665 1430 23.81 5.40 log spherical 14.60 66.62 86.10
Simasuwannarong et al.

(2012)
130 3522 40.68 44.68 log spherical 0.40 0.87 8949.86

Wei et al. (2009) 106 100 92.72 107.58 log spherical 0.03 0.09 2.48
Weindorf et al. (2013) 69 5.13 1501.00 3341.60 log Gaussian 0.13 0.98 112.20
Yang et al. (2009) 100 0.0004 21.22 3.42 none spherical 6.86 11.51 7.37
Zhao et al. (2010) 96 926 41.13 19.74 log spherical 0.07 0.14 18.60
Zupan et al. (2000) 119 5 8.6 7.4 log exponential 0.46 0.74 4.70
Zupan et al. (2000) 119 5 24.8 15.5 log exponential 0.24 0.36 3.30

Pb Assadian et al. (1998)
(Mexico)

79 0.018 6.50 6.30 log linear 0.00 0.26 160.00

Assadian et al. (1998)
(U.SA)

55 0.036 9.00 1.40 log linear 0.00 0.05 160.00

Atteia et al. (1994) 366 14.5 57.00 41.70 log double spherical 0.01 0.02 287.00 0.01 2605.00
Bourennane et al. (2006) 50 0.15 321.58 131.24 none spherical 4176.00 10555.00 100.00
Burgos et al. (2006) 48 0.001 471.00 216.00 log linear 0.03 0.05 18.60
Ferreira da Silva et al.

(2004)
106 1.4 403.00 776.00 none spherical 151161.00 503871.00 – 400.00 121.00

Lin et al. (2001) 194 0.48 2.66 0.26 log spherical 0.05 0.05 1065.00
Shi et al. (2008) 665 1430 32.94 7.00 log spherical 0.00 0.02 82.32
Simasuwannarong et al.

(2012)
130 3522 19.97 19.55 log spherical 0.56 0.76 8949.86

Wei et al. (2009) 106 100 629.00 852.00 log spherical 0.03 0.12 2.56
Weindorf et al. (2013) 5.13 1584.30 2250.00 log stable 0.00 0.93 104.40
Yang et al. (2009) 100 4E�04 18.8 3.92 log spherical 8.48 15.41 3.42
Zhao et al. (2010) 96 926 48.30 15.99 log spherical 0.07 0.07 13.20
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change varied between studies, with larger study areas having
lower rates, but there was generally no more than 10% increase
in correct classification. There was an inflection in the results
from simulation of Ersoy et al. (2008) (Fig. 2) and substantial
variation throughout the categories for that specific study.

Rather than classifying based upon a prediction that is
common among studies, the current study classified based
upon calculated prediction intervals. Based on the

calculations, the prediction intervals presented in the study
are quite large and sample size does not greatly affect them.
In terms of selecting a suitable sample size, this varied for each
study and the number of points correctly classified stabilised at
around 200 samples (except the first set of results from Ersoy
et al. (2008)), but was slightly better around 500 samples.

To understand the underlying mechanisms for the trends,
Pearson correlations were used to compare the % values for
each category with variogram parameters of each study, mean,
area and sampling density (Table 5). Nugget semivariance (c0)
influenced all categories negatively, but the greatest indicated
the higher the nugget semivariance, the lower the number of
points classified as ‘correct’. As the structural semivariance (c1)
increased, error also increased, but this did not seem to influence
uncertainty (r = 0.183). The distance parameter for the
variogram was also related to error (r = 0.533) as well as the
mean, and error decreased with increasing mean (r = �0.462).
Sample area also shared a relationship with the magnitude of
error and uncertainty (r = 0.681 and 0.445 respectively), both
parameters increasing as area increased.

Table 3. Sample size (n), mean and transformation described in the original studies, the associated ASC NEPM health investigation levels (HILs),
calculated unbiased variance, predicted sample size requirement for estimating themean and proportion of each site exceeding the establishedHILs.

Metal Study n Mean Transform Guide
value

Unbiased
variance

Sample size
required

Proportion
exceeding HIL

Cd Atteia et al. 1994; 366 0.02 log 3.0 0.04 2 0
Bourennane et al. 2006; 50 3.98 none 20.0 3.32 3 <0.001
Burgos et al. 2006; 48 4.44 none 20.0 29.78 3 0.003
Shi et al. 2008; 665 �0.76 log 3.0 392.11 108 0.425
Simasuwannarong et al. 2012; 130 0.24 log 3.0 2.06 4 0.028
Wei et al. 2009; 106 2.25 log 3.0 0.17 3 0.036
Weindorf et al. 2013; 69 0.84 log 3.0 0.89 4 0.013
Yang et al. 2009; 100 �1.90 log 3.0 0.00 2 0
Zhao et al. 2010; 96 �1.48 log 3.0 0.62 3 <0.001
Zupan et al. 2000; 119 �0.50 log 3.0 2.48 4 0.014
Zupan et al. 2000; 119 �0.32 log 3.0 2.48 4 0.019

Cu Atteia et al. 1994 366 2.22 log 8.7 2.12 3 <0.001
Bourennane et al. 2006; 50 173.40 none 6000.0 3595.38 2 0
Burgos et al. 2006; 48 4.68 log 8.7 0.20 3 <0.001
Shi et al. 2008 665 �37.44 log 8.7 81.22 3 <0.001
Simasuwannarong et al. 2012; 130 3.08 log 8.7 1.26 3 <0.001
Wei et al. 2009; 106 4.47 log 8.7 0.12 2 0
Weindorf et al. 2013; 69 6.30 log 8.7 1.10 4 0.013
Yang et al. 2009; 100 21.22 none 6000.0 17.48 2 0
Zhao et al. 2010; 96 3.62 log 8.7 0.20 2 0
Zupan et al. 2000; 119 1.55 log 8.7 1.20 3 <0.001
Zupan et al. 2000; 119 2.91 log 8.7 0.60 3 <0.001

Pb Assadian et al. (1998) (Mexico) 79 �7.23 log 5.7 18.19 3 0.002
Assadian et al. (1998) (U.SA) 55 �0.22 log 5.7 4.84 3 0.005
Atteia et al. 1994 366 1.70 log 5.7 0.04 2 0
Bourennane et al. 2006; 50 321.58 none 300.0 14395.68 122 0.571
Burgos et al. 2006; 48 5.75 log 5.7 0.81 97 0.521
Ferreira da Silva et al. 2004; 106 403.00 none 300.0 0.51 2 1
Shi et al. 2008; 665 1.51 log 5.7 0.02 2 0
Simasuwannarong et al. 2012; 130 2.34 log 5.7 1.31 3 0.002
Wei et al. 2009; 106 6.37 log 5.7 0.15 4 0.956
Yang et al. 2009; 100 �8.89 log 5.7 23.64 3 0.002
Zhao et al. 2010; 96 3.81 log 5.7 0.13 3 <0.001

Table 4. Grid specifications for simulations of Pb.

Study Simulated
area (m2)

Simulation grid
interval (m)

Bourennane et al. (2006) 150544 1
Burgos et al. (2006) 1024 0.25
Chang et al. (1998) 184900 0.5
Ersoy et al. (2008) 10000 0.5
Ferreira da Silva et al. (2004) 1392400 2
Weindorf et al. (2013) 5125696 2
Yang et al. (2009) 400 0.1
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Fig. 2. Comparison between classification and sample size for each subset Pb study.
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Discussion

Meta-analysis

This study used a novel method to provide an indication of
broad sample size requirements for assessment of heavy metal
contamination by obtaining variogram parameters from a
variety of studies. Using previous studies provides more
realistic values, rather than simulating an ideal (and often
less likely) scenario, as contamination can be highly variable
both spatially and in magnitude (Glavin and Hooda 2005). The
studies obtained encompassed a variety of land uses and sources
of contamination, helping make this study more widely
applicable to several situations.

Estimating mean contamination across a site

The number of samples required to show whether the 95% CI of
the mean concentration exceeded the guideline values was
relatively small. The majority required four samples or less;
however, some exceeded this, most likely due to the variance in
relation to the sample size, inducing a wider confidence interval
compared with other studies. This could be attributed to various
influencing factors including the original contamination source,
its location, historical land use, soil morphology, climate, and
anthropogenic factors affecting environmental dynamics.

Calculation of the proportion of each site exceeding the
guideline was valuable as it demonstrated that although the
mean may not exceed the guideline, there were still points on
the site that did exceed it. The inverse was also true, with some
means exceeding the guideline, yet some proportion of the site
did not exceed it. Detailed investigation may negate this issue if
sufficient samples are taken. Furthermore, it was useful to
observe the proportion of each site exceeding the guideline
values and compare these with the sample size requirements as
studies with higher sample requirements possessed greater
variability at the site, which may have been missed if only a
small number of samples were taken. The outcomes of this
research demonstrate the importance of calculating proportion
of the site exceeding the guideline values, rather than relying
upon the mean value alone.

Although it is useful to use the mean to obtain an overall
indication of the concentration at a site, especially if samples are
limited; there is much variation that may be missed. This is
especially true in terms of soil contamination as there may be a

mix of diffuse and point sources; these point sources may
be missed, potentially undermining scientific findings and
resulting in failure to remediate where it is required
(Marchant et al. 2011). It is therefore more reliable if a
site were mapped using interpolation to obtain more precise
predictions.

Mapping contaminant distribution

A suitable sample size was suggested to be around 200 samples
as the rate of change in classification error and uncertainty
stabilised around this value. Based upon prediction intervals
and determined classes, the lowest amount of uncertainty was
detected around n = 500, indicating the more samples, the
less the uncertainty, which may not be realistic in many
cases. Obtaining 500 samples over any study area would be
very costly both economically and temporally, and regardless of
sample size, uncertainty was still quite high with little decrease
with increasing sample size. With increasing sample size, the
amount of classification error increased, rather than decreased,
so this would also need to be weighed up when deciding upon
the number of samples to collect. Contaminated sites, especially
following environmental catastrophes, require urgent and
timely assessment and so unless the resources can be
afforded, collection of so many samples would not be
economically sound. Complementary methods in both
physical assessment and mapping are worth exploring; for
example, the use of proximal sensing would allow the
collection of more samples (Horta et al. 2015), and the use
of covariates as supplementary data may provide a more
accurate map of contaminant distribution (Johnson et al. 2017).

It is essential to use unbiased variances when calculating CIs
for comparison with guideline values. To ensure unbiased
variances it is recommended to use design-based sampling
schemes, or, if not practical due to site access and cost, use
correction methods such as the Domburg equation (Domburg
et al. 1994). It could also be useful to explore sampling methods
that are able to take available information, such as that obtained
in initial site investigation, into account. Building of a
conceptual model for contaminated site assessment depends
upon collection of information such as site history, layout, and
topography (ASC NEPM). This site information may also be
useful in development of a less biased sampling scheme.
Conditioned Latin Hypercube sampling derives a sampling
scheme that takes ancillary variables into account, thus
reducing bias (Minasny and McBratney 2006).

It is good to estimate the mean contaminant concentration
of a site; however, to delineate areas that exceed contamination
guideline values and inform remediation, greater detail needs
to be used to reconcile cost and efficiency. The research
findings in this paper and those presented in the compiled
studies provide further evidence of the importance of mapping
and interpolation.

Conclusions

The number of samples required for estimating whether the
mean exceeds the guideline value were very low. However,
evident through the calculation of proportion of site
contamination, estimating the mean may miss a large portion

Table 5. Pearson correlations between original features of subset
studies (variogram parameters, mean, area, and density) and the
simulation classifications. Areas highlighted in bold type indicate

stronger correlations.
n, sample size; c0, nugget semivariance; c1, c2, structural semivariance;

d1, d2, distance parameters

Variable % Correct % Error % Uncertain

c0 �0.77 �0.38 �0.61
c1 �0.03 0.42 0.18
c0/c1 �0.56 �0.59 �0.81
d �0.17 0.53 0.13
mean 0.08 �0.46 0.06
area 0.13 0.68 0.45
density �0.13 �0.68 �0.45
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of the variation at the site, especially as heavy metal
contamination is highly variable. Therefore, it is better to use
interpolation methods such as kriging to detect this variation.
Estimates of plausible sample sizes for mapping a site was
estimated at 200, with 500 samples resulting in the lowest
amount of uncertainty. Collecting so many samples may be
unrealistic in many cases and therefore shows that sample sizes
and schemes are site-specific. To improve accuracy, it would be
worth exploring improving efficiency in other facets of
contamination assessment, such as in detection and in the
reporting stage.
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