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ABSTRACT

Context. It is well recognised that soil organic carbon (SOC) can be transported and deposited
along the same pathways as those of soil erosion and deposition. Aims. To examine the viability
of environmental tracers 137Cs and unsupported 210Pb (210Pbex) as tools to inform soil erosion
and deposition patterns as well as that of the distribution of SOC. Methods. Multiple soil cores
were collected along two transects of similar length and aspect in a steep-slope soil mantled
environment in south-east Australia. Key results. Average SOC concentration was high for
both transects (~6% and 4%). SOC decreased moving downslope suggesting loss of SOC by
erosion. There were strong and significant positive relationships of SOC with 137Cs and 210Pbex
(both r > 0.77, P < 0.0001). At this site, SOC concentration appears related to erosion and
deposition patterns. Conclusion. The hillslope distribution of 137Cs and 210Pbex were very similar,
indicating that both tracers were viable in this environment (r = 0.9, P < 0.0001). The different
origins and half-lives of 137Cs and 210Pbex also demonstrate that the patterns of erosion and deposition
are consistent at decadal time scales. Implications. The use of 210Pbex provides an alternativemethod
for understanding erosion and deposition patterns as well as that of SOC, given that the viability of
137Cs (half-life of 30.1 years) is now questionable due to no new replenishment.

Keywords: 137Cs, 210Pb, 210Pbex, carbon sequestration, lead-210, sediment transport, SOC, soil erosion.

Introduction

Understanding the movement and fate of soil organic carbon (SOC) is essential for 
improved management of the soil–landscape system as well as C sequestration (Murphy 
2015; Minasny et al. 2017; Lal 2019). The location and movement of SOC has been shown 
to be related to soil erosion and deposition. Therefore, quantifying SOC soil redistribution 
requires an understanding of erosion and deposition processes at multiple spatial and 
temporal scales (Moore et al. 1993; Knighton 1998; Lal 2001, 2003, 2004; Berhe et al. 2007; 
Hancock et al. 2010; Quinton et al. 2010; Ruiz Sinoga et al. 2012; Gaspar and Navas 2013; 
Berhe et al. 2014; Kirkels et al. 2014; Murphy 2015; Doetterl et al. 2016; Hoyle et al. 2016). 

Here, environmental tracers (137Cs and unsupported 210Pb also known as 210Pbex) are 
used to provide insights to sediment transport and SOC. Environmental tracers, particularly 
137Cs are well understood and well used to understanding erosion and deposition patterns 
and erosion rates (Ritchie and McHenry 1975; Longmore et al. 1983; McFarlane et al. 1992; 
Loughran 1994; Loughran et al. 2002, 2004; Zapata et al. 2002; Walling et al. 2003; Zapata 
2003; Li et al. 2006; Zhang et al. 2006; Fukuyama et al. 2008; Olley et al. 2013; Özden et al. 
2013; Teramage et al. 2013; Mabit et al. 2014; Fissore et al. 2017). 

Using both 137Cs and 210Pbex provides information over different time periods (He and 
Walling 1997; He et al. 2002; Li et al. 2003; Fukuyama et al. 2008; Mabit et al. 2009, 2014; 
Kato et al. 2010; Teramage et al. 2013). While 137Cs has been extensively used to determine soil 
erosion and deposition patterns, 210Pbex has been less commonly used (Lewis 1977; Walling 
et al. 2003; Walling et al. 2011). Further, it was shown that 137Cs and 210Pbex can be bound to 
soil organic and inorganic materials  and be used as tracers  (Lewis 1977; Dorr 1995). Teramage 
et al. (2013) found a stronger affinity between SOC and 210Pbex than for SOC and 137Cs. Few 
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studies have examined the relationship between these tracers 
and SOC, particularly 210Pbex in the Australian environment. 

137CsAs the last atmospheric nuclear test was 1972, 
provides information on erosion and deposition patterns over 
an approximate 50-year period. In contrast, 210Pb is derived 
from naturally occurring 222Rn (Bunzl et al. 1995) and provides 
information over an approximate 100–200 year period 
(Walling and He 1999; Zapata et al. 2002; Walling et al. 
2003; Zapata 2003; Zhang et al. 2006; Mabit et al. 2014). 
Both tracers therefore provide information at two different 
temporal scales (Wallbrink et al. 1994; Walling and He 2001; 
Li et al. 2003; Walling et al. 2003; Kato et al. 2010). 

Here, both 137Cs and 210Pbex are used to understand SOC 
and soil erosion and deposition patterns on a relatively steep 
slope (~30%) in south-east Australia. This study forms part of 
a long-term investigation of hillslope geomorphology in the 
south-east region of Australia (Rüdiger et al. 2007; Martinez 
et al. 2009, 2010; Hancock et al. 2010, 2015; Wells et al. 2012; 
Wells and Hancock 2014; Chen et al. 2015; Kunkel et al. 2016, 
2019; Hancock and Wells 2021). There appears to be few 
studies where the two tracers have been directly used and 
compared in this way. 

The aims are (1) to report and understand the patterns of 
the environmental tracers (137Cs and 210Pbex) and SOC in a 
relatively high rainfall steep-slope environment and (2) assess 
the viability of the environmental tracers as tools to provide 
insights concerning soil erosion and deposition patterns as 
well as hillslope SOC concentration. 
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Study site

The study site (Springhills) is located in the headwaters of the 
Krui River catchment (~562 km2), New South Wales (NSW), 
Australia (Fig. 1), a tributary of the Goulburn River which 
joins the Hunter River and discharges at Newcastle. The site 
is underlain with Tertiary basalt of the Liverpool Range beds 
and forms part of the Merriwa Plateau. The basaltic soils 
are highly fertile. The study site is located on the property 
‘Springhills’ and has undulating to steep topography typical 
of the local headwaters with relief at the site of approximately 
500 m. 

Original vegetation has been mostly cleared over the past 
150 years and replaced with improved and natural pasture. 
While steep, landuse is well suited to cattle and sheep and 
cattle grazing (Story et al. 1963; Kovac and Lawrie 1991). 
Vegetation species include Austrostipa aristiglumis (plains 
grass) and various Poa (tussock) species (Fig. 2). 

Climate is classified as temperate dominated by continental 
influence (Kovac and Lawrie 1991). Annual average rainfall is 
approximately 1000 mm. Mean monthly minimum and maximum 
air temperatures are 3°C (winter) and 16°C (summer), and 
17°C (winter) and 30°C (summer), respectively (www.bom. 
gov.au). 

Here two sites with approximately the same easterly aspect, 
relief, slope and slope lengths and management (pasture and 
grazing) but at two different elevations were examined 
(Figs 2, 3). A transect-based sampling methodology was 

Krui river network 

0 10 20 km 

Fig. 1. Location of the Springhills study site.
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Table 1. Upper and Lower transect topographic and sampling data.

Length Min. elevation Max. Relief Tan
(m) (m) elevation (m) (m) slope

Fig. 2. View from the Upper transect looking south down the Krui
valley (top) and looking upslope (bottom). The white tape is the
location of the sampling.

Fig. 3. Lower transect looking upslope. The white tape displays the
transect position with soil samples (in bags) indicating the sample
positions.

Upper 152 785.3 829.9 44.7 0.32

Lower 153 535.3 581.7 46.4 0.30

employed. The two transects were named ‘Upper’ and ‘Lower’ 
transects (Table 1). The Upper transect at an elevation of 
830 m was 150 m long and ran a ridgeline to a zero-order 
drainage line at its base (Fig. 2; Table 1). The 160-m-long 
Lower transect (highest elevation approximately 535 m) ran 
from ridgeline to a creek flat (Fig. 3). Both sites had similar 
vegetation cover (native and improved pasture), uniform 
soil type and consistent landuse (grazing). 

Methods

Sampling and laboratory methodology

Soil samples were collected at regular intervals using a 
transect approach ensuring that the whole toposequence 
was sampled (Pennock and Appleby 2002). Steel cores were 
used for sampling (95 mm internal diameter and length 
210 mm). For insertion of the core, a cap or ‘dolly’ was placed 
on top of the steel core and a hammer manually used to insert 
the core to the core maximum depth or point of refusal. Cores 
were extracted using vice-grips to twist the core and lift it 
from the ground. Each soil sample was double-bagged and 
labelled for transport. 

Soil samples were processed at the University of Newcastle 
Soils Laboratory. Soil samples were first weighed and dried in 
a 40°C oven for at least 7 days. Each sample was disaggregated 
mechanically by hand using a mortar and pestle and passed 
through a 2 mm sieve to separate fine and coarse fractions 
and mass was recorded. Sand, silt and clay contents of the 
<2 mm fraction were determined by the hydrometer method 
(Smith and Atkinson 1975). Rock fraction here is defined as 
the >2 mm size fraction. Subsamples for total C assessment 
were sent to the Environmental Analysis Laboratory at Southern 
Cross University, Lismore, NSW (LECO dry combustion 
method). 

Environmental tracers

Environmental radionuclides such as 137Cs and 210Pbex are 
useful for providing details on erosion and deposition across 
multiple spatial and temporal scales (Olley et al. 2013). The 
137Cs can be used to understand medium-term (~50 year 
old) soil erosion and deposition patterns (Ritchie and McHenry 
1975; Longmore et al. 1983; Campbell et al. 1988; McFarlane 
et al. 1992; Loughran 1994; Loughran et al. 2002, 2004; 
Krause et al. 2003; Zapata 2003; Martinez et al. 2009; 
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Gaspar and Navas 2013; Hancock et al. 2015). 137Cs in soil 
was supplied as fallout from atmospheric testing of nuclear 
weapons and nuclear accidents (Teramage et al. 2013, 2015) 
and is adsorbed to clay after atmospheric fallout. There has 
been no input of 137Cs to the Australian environment since 
atmospheric testing of nuclear weapons stopped in the early 
1970s. The half-life of 137Cs is relatively short (30.1 years); 
however, it is still detectable in many parts of Australia 
(including this site). Several studies have used this approach 
in the general study area (Martinez et al. 2009; Hancock 
et al. 2015; Hancock and Wells 2021). 

210PbexDerived from the decay of gaseous 222Rn, is a 
naturally occurring radionuclide from the 238U decay series. 
Some 222Rn in soil diffuses into the atmosphere and decays 
to 210Pb, and subsequent fallout of 210Pb to the landscape 
surface provides an input that is not in equilibrium (excess) 
with its parent 226Ra (Walling et al. 2003; Zapata 2003; 
Gaspar et al. 2017). Fallout 210Pb is commonly termed 
unsupported or excess 210Pb, when incorporated into soils or 
sediments in order to distinguish it from the 210Pb produced in 
situ by the decay of 226Ra. Given its continuous fallout, 210Pbex 

can provide information over an approximate 100-year period 
(Zapata et al. 2002; Zapata 2003; Walling et al. 2003; Zhang 

Results

Hillslope and soil properties

The transects both had linear hillslope profiles with approxi-
mately the same slope (~30%) and length (~150 m) (Fig. 4, 
Table 1). At the time of sampling vegetation consisted of low 
grass cover (Figs 2, 3). 

Soil texture (sand, silt and clay), in particular clay, can 
influence SOC concentration. Clay for the Upper transect 
(average = 35%, s.d. = 10) was significantly lower (P < 0.05) 
compared to the Lower transect (average = 49%, s.d. = 12). 
There was no distinct observable pattern in silt and sand 
along either transect nor with elevation or distance from 
the divide (Fig. 4). However, clay was negatively (non-
significantly) (P > 0.05) correlated with elevation or distance 
from the catchment divide. That is, clay increased down the 
hillslope, but being non-significant may be due to chance. For 
both transects, SOC was significantly and negatively correlated 
with clay (P < 0.005). 

For both transects, SOC concentration was ‘high’ (3.0–5.15%) 
to ‘very high’ (>5.15%) (Hazelton and Murphy 2007), being 
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significantly higher (P < 0.05) for the Upper than the Lower 
transect (Table 2). The SOC for both transects was signifi-
cantly negatively correlated (P < 0.05) with elevation and 
distance from the divide (Table 3). Combining both data sets 
also showed a significant correlation. There was no relation-
ship of SOC with slope, and of SOC with upslope area or TWI 
for any of the data sets. 

Environmental tracers

For both transects, the concentrations of 137Cs, 210Pbex and 
SOC followed similar patterns (Figs 5, 6). The Upper and 
Lower transects both had the highest SOC and 137Cs concen-
trations at the top of the transect, which rapidly reduced at 
20–50 m distance from the divide. A similar pattern was 
observed for 210Pbex. 

The 137Cs was positively and significantly correlated with 
210Pbex for both the Upper (r = 0.92, P < 0.0001) and Lower 
(r = 0.94, P < 0.0001) data sets (Fig. 7). For all data sets, SOC 
was significantly positively correlated with 137Cs and 210Pbex 

(Table 3, Fig. 8). This suggests that a lower SOC concentration 
is related to erosion while a higher SOC concentration is 
related to areas of deposition. Both 137Cs and 210Pbex were 
positively correlated with elevation and negatively correlated 
with distance from the catchment divide for both the Upper 
and Lower data sets (Table 3). 

137Cs 210PbexCombining both data sets, and were 
positively correlated with normalised elevation (elevation for 
both Upper and Lower transects was scaled between 0 and 1 

Table 2. Upper and Lower transect SOC (%) data.

No. of Average Standard Minimum Maximum
samples deviation

Upper 21 5.53 1.39 3.15 8.26

Lower 22 4.09 1.44 1.35 6.71

Table 3. Environment tracer relationships with topography and SOC
for the Upper and Lower transects.

Elevation (m) Distance (m) SOC (%) Clay (%)

Lower
137Cs 0.6*** −0.61*** 0.83*** −0.57*
210Pbex 0.62** −0.63** 0.82*** −0.58**

Upper
137Cs 0.49* −0.48* 0.80* −0.64**
210Pbex 0.45* −0.42* 0.82*** −0.61**

Lower and Upper data sets combined
137Cs 0.54**,A −0.54** 0.80*** −0.59***
210Pbex 0.51**,A −0.50** 0.78*** −0.56***

***P < 0.0001; **P < 0.005; *P < 0.05.
AElevation has been normalised for comparison.

10 

8 

6 

4 

2 

0 

Upper SOC 

137Cs 

8 

7 

6 

5 

4 

3 

2 

1 

0 

SO
C

 (%
) 

SO
C

 (%
) 

137C
s (Bq/kg) 

137C
s (Bq/kg) 

0 20 40 60 80 100 120 140 160 
Distance (m) 

Fig. 5. SOC and 137Cs for the Upper and Lower transects.

for comparison) and negatively correlated with distance from 
the divide (Table 3). Both 137Cs and 210Pbex were significantly 
positively correlated with SOC (%) and negatively correlated 
with clay. 

Discussion

SOC and topography

Both transects demonstrated a landscape with high SOC 
concentrations suggesting good structural stability (Hazelton 
and Murphy 2007). Here SOC was significantly higher for the 
Upper transect yet clay was significantly lower. Combining 
both data sets demonstrated that the relationship with elevation 
was consistent across the varying elevation regimes of the two 
transects. We can only speculate that more rainfall is received 
at higher altitudes and together with lower temperatures (the 
Upper transect is ~250 m higher than the Lower transect), 
decay rates are slower and more SOC can be stored. Given 
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the high SOC concentration, it is possible that the soil is 
saturated and that there is an export of SOC as suggested 
by the pattern of environmental tracers. On uncultivated 
hillslopes (albeit at lower slopes and lower rainfall but with 
similar management), no relationship was observed between 
SOC and environmental tracers over a number of years 
(Martinez et al. 2010; Hancock et al. 2015). Whether the 
soil at Springhills (and other sites) can increase SOC is open 
to question (Minasny et al. 2017). 

We also found that despite a significantly higher SOC 
concentration for the Upper transect, clay percentage was 
significantly lower. This inverse relationship contrasts to 
much of the literature, where it is generally accepted that 
clays inhibit microbial and physical oxidation of SOC 
(Oades 1988; Arrouays et al. 1995; Grigal and Berguson 
1998; Percival et al. 2000; Müller and Höper 2004; Wei et al. 
2014; O’Brien et al. 2015; Singh et al. 2016). However, this 
understanding is not clear for all environments. Other studies 
in the area examining the Krui and Merriwa catchments also 
found that SOC decreased with increasing clay (Kunkel et al. 
2019). We are currently examining this issue at other areas in 
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the catchment with lower rainfall and different soils and 
texture (Martinez et al. 2009). 

SOC and environmental tracers

Both transects had decreasing SOC down the transect (Table 3). 
There was a significant negative relationship of SOC with 
elevation as well as with distance down the hillslope (Table 3). 
This reduction is likely a result of the erosion and deposi-

137Cstion processes occurring as demonstrated by and 
210Pbex (discussed further below). Therefore, SOC at this site 
is being lost from the hillslope at rates commensurate with the 
erosional loss. 

Many studies have speculated or proposed a relationship 
between SOC and soil erosion and deposition (Lewis 1977; 
Dorr 1995; Kuhn et al. 2009; Martinez et al. 2009; Gaspar 
and Navas 2013; Gaspar et al. 2019). Several have employed 
137Cs as a surrogate for erosion and deposition (Mabit et al. 
2008). Here, a consistent and robust relationship between 
SOC and the environmental tracers 137Cs and 210Pbex was 
demonstrated (Walling et al. 2003; Fukuyama et al. 2008; 
Teramage et al. 2013, 2015; Özden et al. 2013). 

137Cs 210PbexThe and concentrations observed here 
represent erosion and deposition patterns during the past 
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explored further in Australia. This suggests that the SOC 
patterns in relation to erosion and deposition are robust 
and consistent at longer than the 50-year history of 137Cs 
and 210Pbex in this environment (Walling et al. 2003; Mabit 
et al. 2009; Gaspar et al. 2019). 

Study limitations and further work

Understanding SOC movement can be a complex exercise as 
SOC can be transported by a variety of surface and subsurface 
processes at different rates (Hassink 1997; Oades 1988; 
Rumpel and Kögel-Knabner 2011; Schwanghart and Jarmer 
2011; Ruiz Sinoga et al. 2012; Gaspar and Navas 2013; 
Jandl et al. 2014). The environmental tracers here are well-
accepted and understood (Zapata et al. 2002; Zapata 2003). 
These tracers provide information on erosion and deposition 
at decadal time scales and therefore reflect longer-term trends. 

The use of the two different (and unrelated) tracers suggest 
that the observed patterns are robust. The method can be 
applied at a site after a major storm event to assess any change 
(Hancock et al. 2015, 2019). Interestingly, Hancock et al. 
(2015, 2019) found significant differences in 137Cs concentra-
tion between 2006 and 2014 in a subcatchment of the Krui as 
well as the entire Krui catchment. This difference was 
attributed to a major storm event in the area (Mills et al. 
2010). However, it is recognised that the information 
provides little insight into short-term or storm-event time 
scale processes. Short-term tracers such as 7Be would also 
provide insight into storm-scale events (Zapata et al. 2002; 
Zapata 2003; Taylor et al. 2013). The 210Pbex is continually 
replenished and offers the opportunity to determine decadal-
scale erosion rates. While there are conversion models available 
to determine erosion rates, these models have not been fully 
developed and evaluated, particularly for Australia. This is a 
major undertaking and the focus of ongoing work by the 
research team. 

Conclusion

We examined a relatively high slope and high rainfall soil 
mantled environment for the spatial and temporal move-
ment of SOC along two hillslope transects with similar 
lengths, slopes and aspect. Environmental tracers (137Cs and 
210Pbex) were used to understand the movement of SOC. 
The SOC concentrations were high, indicating good structural 
stability, soil productivity and health. We found that the 
movement of SOC was related to soil erosion and deposition 
patterns. In particular, 210Pbex was shown to be a viable tracer 
to understand SOC patterns and this appears to be the first 
time that 210Pbex has been used in this way. 

Importantly, the results demonstrate that soil C concentra-
tion is related to erosion and deposition processes at decadal 
time scales, suggesting a continuity of sediment transport and 
deposition processes despite several major droughts, different 
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Fig. 8. SOC and relationship with 137Cs and 210Pbex for the Upper and
Lower transect soil cores.

(approximately) 50 and 100 years, respectively (Zapata et al. 
2002; Walling et al. 2003; Zhang et al. 2006; Teramage et al. 
2013; Mabit et al. 2014; Gaspar et al. 2019). The author 

210Pbexbelieves that this is the first report of used to 
examine the spatial and temporal distribution of SOC in a 
grazing pasture environment in Australia. The consistency 
of patterns between the two tracers suggests that the same 
erosion and deposition patterns occur across different time 
scales (Walling et al. 2003). The advantage of 210Pbex is that 
it is a naturally occurring product that is continually being 
replenished, and with a half-life of 22.3 years it appears to 
be a viable alternative to 137Cs. Further, given that 137Cs fallout 

210Pbexterminated in the early 1970s and is continually 
replenished, the findings here suggest that SOC and its 
relationship with erosion and deposition is consistent at 
decadal time scales (Walling et al. 2003). With the consistent 
replenishment of 210Pbex, the patterns could be considered to 
be a function of the present hillslope behaviour, not an 
average of the last 50 years as provided by the 137Cs method. 
Therefore, the tracers have the ability for assessing and 
detecting change in SOC transport patterns. However, Kato 
et al. (2010) found that the use of 210Pbex may be problematic 
for soil erosion understanding in semi-arid areas (although 
not the environment examined here). This needs to be 
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land ownership (over 150 years) and likely differences in land 
management. The approach demonstrated here using environ-
mental tracers can be readily applied at other sites to further 
enhance our knowledge of SOC distribution and transport. 
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