Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Dynamics of moisture content in spruce–feather moss and spruce–Sphagnum organic layers during an extreme fire season and implications for future depths of burn in Clay Belt black spruce forests

Aurélie Terrier A E , William J. de Groot B , Martin P. Girardin A C and Yves Bergeron A D
+ Author Affiliations
- Author Affiliations

A Centre d’étude de la forêt, Université du Québec à Montréal, C.P. 8888, Montréal, QC, H3C 3P8, Canada.

B Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste Marie, ON, P6A 2E5, Canada.

C Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des Laurentides, 1055 rue du P.E.P.S., C.P. 10380, Succursale Sainte-Foy, Québec, QC, G1V 4C7, Canada.

D Chaire industrielle en aménagement forestier durable (NSERC-UQAT-UQAM), Université du Québec en Abitibi-Témiscamingue, 445 boulevard de l’Université, Rouyn-Noranda, QC, J9X 5E4, Canada.

E Corresponding author. Email: terrier.aurelie@courrier.uqam.ca

International Journal of Wildland Fire 23(4) 490-502 https://doi.org/10.1071/WF13133
Submitted: 13 August 2013  Accepted: 3 January 2014   Published: 11 April 2014

Abstract

High moisture levels and low frequency of wildfires have contributed to the accumulation of the organic layer in open black spruce (Picea mariana)–Sphagnum dominated stands of eastern boreal North America. The anticipated increase in drought frequency with climate change could lead to moisture losses and a transfer of the stored carbon back into the atmosphere due to increased fire disturbance and decomposition. Here we studied the dynamics of soil moisture content and weather conditions in spruce–feather moss and spruce–Sphagnum dominated stands of the boreal Clay Belt of eastern Canada during particularly dry conditions. A linear mixed model was developed to predict the moisture content of the organic material according to weather, depth and site conditions. This model was then used to calculate potential depth of burn and applied to climate model projections to determine the sensitivity of depth of burn to future fire hazards. Our results suggest that depth of burn varies only slightly in response to changes in weather conditions in spruce–Sphagnum stands. The reverse holds true in spruce–feather moss stands. In conclusion, our results suggest that spruce–Sphagnum stands in the boreal Clay Belt may be resistant to an increase in the depth of burn risk under climate change.


References

Amiro BD, Cantin A, Flannigan MD, de Groot WJ (2009) Future emissions from Canadian boreal forest fires. Canadian Journal of Forest Research 39, 383–395.
Future emissions from Canadian boreal forest fires.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlyms7k%3D&md5=5ad8fba083f62e761cfb9c5f11deae7dCAS |

Anderson KR, Otway S (2003) Validating the overwintering effect on the drought code in Elk Island National Park. In ‘Proceedings of the 5th Symposium on Fire and Forest Meteorology’, 16–20 November 2003, Orlando, FL. Paper J11.4. (American Meteorological Society: Boston, MA)

Benscoter BW, Wieder RK (2003) Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Canadian Journal of Forest Research 33, 2509–2513.
Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire.Crossref | GoogleScholarGoogle Scholar |

Benscoter BW, Thompson DK, Waddington JM, Flannigan MD, Wotton BM, de Groot WJ, Turetsky MR (2011) Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils. International Journal of Wildland Fire 20, 418–429.
Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFGlsLo%3D&md5=673fa05971d5b03648118009bdaef5beCAS |

Bergeron Y, Fenton NJ (2012) Boreal forests of eastern Canada revisited: old growth, nonfire disturbances, forest succession, and biodiversity. Botany 90, 509–523.
Boreal forests of eastern Canada revisited: old growth, nonfire disturbances, forest succession, and biodiversity.Crossref | GoogleScholarGoogle Scholar |

Bergeron Y, Gauthier S, Flannigan MD, Kafka V (2004) Fire regimes at the transition between mixedwoods and coniferous boreal forest in northwestern Quebec. Ecology 85, 1916–1932.
Fire regimes at the transition between mixedwoods and coniferous boreal forest in northwestern Quebec.Crossref | GoogleScholarGoogle Scholar |

Bergeron Y, Cyr D, Girardin MP, Carcaillet C (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. International Journal of Wildland Fire 19, 1127–1139.
Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data.Crossref | GoogleScholarGoogle Scholar |

Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annual Review of Ecology and Systematics 20, 1–28.
Environmental factors and ecological processes in boreal forests.Crossref | GoogleScholarGoogle Scholar |

Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology 10, 330–339.
Decreased summer water table depth affects peatland vegetation.Crossref | GoogleScholarGoogle Scholar |

Burton PJ, Messier C, Weetman GF, Prepas EE, Adamowicz WL, Tittler R (2003) The current state of boreal forestry and the drive for change. In ‘Towards Sustainable Management of the Boreal Forest’. (Eds PJ Burton, C Messier, DW Smith, WL Adamowicz) pp. 1–40. (NRC Research Press: Ottawa, ON)

Busby JR, Whitfield DWA (1978) Water potential, water content, and net assimilation of some boreal forest mosses. Canadian Journal of Botany 56, 1551–1558.
Water potential, water content, and net assimilation of some boreal forest mosses.Crossref | GoogleScholarGoogle Scholar |

Canadian Council of Forest Ministers 2012. National forestry database. Available at http://nfdp.ccfm.org/ [Verified 20 February 2014]

Dai TS, Haavisto VF, Sparling JH (1974) Water level fluctuation in a northeastern Ontario peatland. Canadian Journal of Forest Research 4, 76–81.
Water level fluctuation in a northeastern Ontario peatland.Crossref | GoogleScholarGoogle Scholar |

Dixon RK, Solomon AM, Brown S, Houghton RA, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263, 185–190.
Carbon pools and flux of global forest ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs12gsbc%3D&md5=b57da115e1d54927d4a2b48a6c7d173bCAS | 17839174PubMed |

Environment Canada (2012) National climate data and information archive. Available at http://climate.weatheroffice.gc.ca/ [Verified 20 February 2014]

Fenton NJ, Bergeron Y (2011) Dynamic old-growth forests? A case study of boreal black spruce forest bryophytes. Silva Fennica 45, 983–994.
Dynamic old-growth forests? A case study of boreal black spruce forest bryophytes.Crossref | GoogleScholarGoogle Scholar |

Fenton N, Lecomte N, Légaré S, Bergeron Y (2005) Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications. Forest Ecology and Management 213, 151–159.
Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications.Crossref | GoogleScholarGoogle Scholar |

Fenton N, Légaré S, Bergeron Y, Paré D (2006) Soil oxygen within boreal forests across an age gradient. Canadian Journal of Soil Science 86, 1–9.
Soil oxygen within boreal forests across an age gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1agt78%3D&md5=3e0279343cacd70de3bb4737a5dcdb4eCAS |

Fenton NJ, Béland C, De Blois S, Bergeron Y (2007) Sphagnum establishment and expansion in black spruce (Picea mariana) boreal forests. Canadian Journal of Botany 85, 43–50.
Sphagnum establishment and expansion in black spruce (Picea mariana) boreal forests.Crossref | GoogleScholarGoogle Scholar |

Ferguson SA, Ruthford JE, McKay SJ, Wright D, Wright C, Ottmar R (2002) Measuring moisture dynamics to predict fire severity in longleaf pine forests. International Journal of Wildland Fire 11, 267–279.
Measuring moisture dynamics to predict fire severity in longleaf pine forests.Crossref | GoogleScholarGoogle Scholar |

Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila E-S, Roulet N (2011) Peatlands in the Earth’s 21st century climate system. Environmental Reviews 19, 371–396.
Peatlands in the Earth’s 21st century climate system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVyhtw%3D%3D&md5=13ba906b859bd3e9cecb8c5c02b63786CAS |

Fulé PZ (2008) Does it make sense to restore wildland fire in changing climate? Restoration Ecology 16, 526–531.
Does it make sense to restore wildland fire in changing climate?Crossref | GoogleScholarGoogle Scholar |

Gignac LD, Vitt DH (1994) Responses of northern peatlands to climate change-effects on bryophytes. The Journal of the Hattori Botanical Laboratory 75, 119–132.

Girardin MP, Wotton BM (2009) Summer moisture and wildfire risks across Canada. Journal of Applied Meteorology and Climatology 48, 517–533.
Summer moisture and wildfire risks across Canada.Crossref | GoogleScholarGoogle Scholar |

Girardin MP, Ali AA, Carcaillet C, Gauthier S, Hély C, Le Goff H, Terrier A, Bergeron Y (2013a) Fire in managed forests of eastern Canada: risks and options. Forest Ecology and Management 294, 238–249.
Fire in managed forests of eastern Canada: risks and options.Crossref | GoogleScholarGoogle Scholar |

Girardin MP, Ali AA, Carcaillet C, Blarquez O, Hély C, Terrier A, Genries G, Bergeron Y (2013b) Vegetation limits the impact of a warm climate on boreal wildfires. New Phytologist 199, 1001–1011.
Vegetation limits the impact of a warm climate on boreal wildfires.Crossref | GoogleScholarGoogle Scholar | 23691916PubMed |

Gornall JL, Jónsdóttir IS, Woodin SJ, Wal R (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153, 931–941.
Arctic mosses govern below-ground environment and ecosystem processes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srjtVGjtg%3D%3D&md5=6ac39a2b2f2c1b4d17ab02b4f1a9297bCAS | 17618466PubMed |

Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES (2000) The role of fire in the boreal carbon budget. Global Change Biology 6, 174–184.
The role of fire in the boreal carbon budget.Crossref | GoogleScholarGoogle Scholar |

Harden JW, Manies KL, Turetsky MR, Neff JC (2006) Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Global Change Biology 12, 2391–2403.
Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska.Crossref | GoogleScholarGoogle Scholar |

Harper K, Boudreault C, De Grandpré L, Drapeau P, Gauthier S, Bergeron Y (2003) Structure, composition, and diversity of old-growth black spruce boreal forest of the Clay Belt region in Quebec and Ontario. Environmental Reviews 11, S79–S98.
Structure, composition, and diversity of old-growth black spruce boreal forest of the Clay Belt region in Quebec and Ontario.Crossref | GoogleScholarGoogle Scholar |

Intergovernmental Panel on Climate Change (IPCC) (2007) ‘IPCC Fourth Assessment Report: Climate Change 2007 (AR4).’ (Cambridge University Press: Geneva, Switzerland)

Johnson EA, Keith DM, Martin YE (2013) Comparing measured duff moisture with a water budget model and the duff and drought codes of the Canadian Fire Weather Index. Forest Science 59, 78–92.
Comparing measured duff moisture with a water budget model and the duff and drought codes of the Canadian Fire Weather Index.Crossref | GoogleScholarGoogle Scholar |

Kasischke ES, Verbyla DL, Rupp TS, McGuire AD, Murphy KA, Jandt R, Barnes JL, Hoy EE, Duffy PA, Calef M, Turetsky MR (2010) Alaska’s changing fire regime – implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research 40, 1313–1324.
Alaska’s changing fire regime – implications for the vulnerability of its boreal forests.Crossref | GoogleScholarGoogle Scholar |

Lafleur B, Paré D, Munson AD, Bergeron Y (2010) Response of northeastern North American forests to climate change: will soil conditions constrain tree species migration? Environmental Reviews 18, 279–289.
Response of northeastern North American forests to climate change: will soil conditions constrain tree species migration?Crossref | GoogleScholarGoogle Scholar |

Lavoie M, Paré D, Fenton N, Groot A, Taylor K (2005a) Paludification and management of forested peatlands in Canada: a literature review. Environmental Reviews 13, 21–50.
Paludification and management of forested peatlands in Canada: a literature review.Crossref | GoogleScholarGoogle Scholar |

Lavoie M, Paré D, Bergeron Y (2005b) Impact of global change and forest management on carbon sequestration in northern forested peatlands. Environmental Reviews 13, 199–240.
Impact of global change and forest management on carbon sequestration in northern forested peatlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVWntrY%3D&md5=dfbfb45c7d78887cf313566213480f52CAS |

Lawson BD, Dalrymple GN (1996) Ground-truthing the drought code: field verification of overwinter recharge of forest floor moisture. Canadian Forest Service, FRDA Report 268. (Victoria, BC)

Le Goff H, Flannigan MD, Bergeron Y, Leduc A, Gauthier S, Logan K (2008) Des solutions d’aménagement pour faire face aux changements climatiques: l'exemple des feux de forêts. In ‘Aménagment écosystémique en forêt boréale’. (Eds S Gauthier, M-A Vaillancourt, A Leduc, L De Grandpré, D Kneeshaw, H Morin, P Drapeau, Y Bergeron) pp. 109–135. (Presses de l’Université du Québec: Québec, QC)

Le Goff H, Flannigan MD, Bergeron Y (2009) Potential changes in monthly fire risk in eastern Canadian boreal forest under future climate change. Canadian Journal of Forest Research 39, 2369–2380.
Potential changes in monthly fire risk in eastern Canadian boreal forest under future climate change.Crossref | GoogleScholarGoogle Scholar |

Lecomte N, Simard M, Bergeron Y (2006a) Effects of fire severity and initial tree composition on stand structural development in the coniferous boreal forest of northwestern Québec, Canada. Ecoscience 13, 152–163.
Effects of fire severity and initial tree composition on stand structural development in the coniferous boreal forest of northwestern Québec, Canada.Crossref | GoogleScholarGoogle Scholar |

Lecomte N, Simard M, Fenton N, Bergeron Y (2006b) Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forests of eastern Canada. Ecosystems 9, 1215–1230.
Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forests of eastern Canada.Crossref | GoogleScholarGoogle Scholar |

Lee H, Schuur EAG, Vogel JG (2010) Soil CO2 production in upland tundra where permafrost is thawing. Journal of Geophysical Research – Biogeosciences 115, G01009

Loisel J, Gallego-Sala AV, Yu Z (2012) Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 9, 2737–2746.
Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2lt7bL&md5=213aa2d093ca1908d43583776e358f5eCAS |

Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications 17, 2145–2151.
Climate change and forests of the future: managing in the face of uncertainty.Crossref | GoogleScholarGoogle Scholar | 18213958PubMed |

Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology 35, 651–665.
Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series.Crossref | GoogleScholarGoogle Scholar |

Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) ‘Special report on emissions scenarios: a special report of working group III of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge, UK)

Otway SG, Bork EW, Anderson KR, Alexander ME (2007) Relating changes in duff moisture to the Canadian Forest Fire Weather Index System in Populus tremuloides stands in Elk Island National Park. Canadian Journal of Forest Research 37, 1987–1998.
Relating changes in duff moisture to the Canadian Forest Fire Weather Index System in Populus tremuloides stands in Elk Island National Park.Crossref | GoogleScholarGoogle Scholar |

Payette S, Rochefort L (2001) Ecologie des tourbières. (Presse de l’Université Laval: Sainte Foy, Québec, QC)

Pelletier G, Dumont Y, Bédard M, Bergeron J (1996) SIFORT, un système hybride des modes vectoriel et matriciel pour une nouvelle approche de l’analyse forestière. Arpenteur-Géomètre 23, 8–9.

Pinheiro JC, Bates DM (Eds) (2000) ‘Mixed-effects models in S and S-PLUS.’ (Springer: New York)

Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, LeQuéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In ‘Climate Change 2001: the Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds JT Houghton, Y Ding, DJ Griggs, M. Noguer, PJ van der Linden, X. Dai, K. Maskell, CA Johnson) pp. 185–237. (Cambridge University Press: Cambridge, UK)

R Development Core Team (2010) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria)

Régnière J, Bolstad P (1994) Statistical simulation of daily air temperature patterns eastern North America to forecast seasonal events in insect pest management. Environmental Entomology 23, 1368–1380.

Renard S, Gauthier S, Fenton N, Bergeron Y (2009) Assessment of prescribed burning effects in paludified black spruce forests in Ontario’s Clay Belt region. In ‘Proceedings of the 7th North American Forest Ecology Workshop’, 22–26 June 2009, Logan, UT, USA . (Logan, UT) Available at http://digitalcommons.usu.edu/nafecology/sessions/recovery/4/ [Verified 28 March 2014]

Shetler G, Turetsky MR, Kane E, Kasischke E (2008) Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Canadian Journal of Forest Research 38, 2328–2336.
Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFynt7o%3D&md5=6faee16de994e994b9dccbe605ec1825CAS |

Silvola J (1991) Moisture dependence of CO2 exchange and its recovery after drying in certain boreal forest and peat mosses. Lindergia 17, 5–10.

Simard M, Lecomte N, Bergeron Y, Bernier PY, Pare D (2007) Forest productivity decline caused by successional paludification of boreal soils. Ecological Applications 17, 1619–1637.
Forest productivity decline caused by successional paludification of boreal soils.Crossref | GoogleScholarGoogle Scholar | 17913128PubMed |

Simard M, Bernier P, Bergeron Y, Paré D, Guérine L (2009) Paludification dynamics in the boreal forest of the James Bay lowlands: effect of time since fire and topography. Canadian Journal of Forest Research 39, 546–552.
Paludification dynamics in the boreal forest of the James Bay lowlands: effect of time since fire and topography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlyntbg%3D&md5=ec756a64c5c94f4ab1ecd2f63abff0f9CAS |

Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y (2013) Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecological Applications 23, 21–35.
Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.Crossref | GoogleScholarGoogle Scholar | 23495633PubMed |

Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES (2011a) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience 4, 27–31.
Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2jur3O&md5=039356c1260161ea7245d5fd0cb55dfaCAS |

Turetsky MR, Donahue WF, Benscoter BW (2011b) Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications 2, 514
Experimental drying intensifies burning and carbon losses in a northern peatland.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MblvVSjug%3D%3D&md5=cb74e7effdaba4d91db054e536cf04b8CAS | 22044993PubMed |

Van Wagner CE (1987) Development and Structure of the Canadian Forest Fire Weather Index System. Canadian Forest Service, Forestry Technical Report 35. (Ottawa, ON)

Vecchi GA, Msadek R, Delworth TL, Dixon KW, Guilyardi E, Hawkins E, Karspeck AR, Mignot J, Robson J, Rosati A, Zhang R (2012) Comment on ‘Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N’. Science 338, 604
Comment on ‘Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFygtbvF&md5=1059d69321bf40280bc11dc94105531aCAS | 23118168PubMed |

Vincent JS, Hardy L (1977) L’évolution et l’extension des lacs glaciaires Barlow et Ojibway en territoire québécois. Géographie Physique et Quaternaire 31, 357–372.
L’évolution et l’extension des lacs glaciaires Barlow et Ojibway en territoire québécois.Crossref | GoogleScholarGoogle Scholar |

Vitt DH, Halsey LA, Zoltai SC (2000) The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Canadian Journal of Forest Research 30, 283–287.
The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost.Crossref | GoogleScholarGoogle Scholar |

Waddington JM, Thompson DK, Wotton M, Quinton WL, Flannigan MD, Benscoter BW, Baisley SA, Turetsky MR (2012) Examining the utility of the Canadian Forest Fire Weather Index System in boreal peatlands. Canadian Journal of Forest Research 42, 47–58.
Examining the utility of the Canadian Forest Fire Weather Index System in boreal peatlands.Crossref | GoogleScholarGoogle Scholar |

Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87, 29–47.
Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls.Crossref | GoogleScholarGoogle Scholar |

Wotton BM (2009) Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environmental and Ecological Statistics 16, 107–131.
Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCgs7w%3D&md5=eca6b8a722b052dbaa67c2891e3d0c12CAS |

Wotton BM, Nock CA, Flannigan MD (2010) Forest fire occurrence and climate change in Canada. International Journal of Wildland Fire 19, 253–271.
Forest fire occurrence and climate change in Canada.Crossref | GoogleScholarGoogle Scholar |

Zoltai SC, Morrissey LA, Livingston GP, de Groot WJ (1998) Effects of fires on carbon cycling in North American boreal peatlands. Environmental Reviews 6, 13–24.
Effects of fires on carbon cycling in North American boreal peatlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsV2jt78%3D&md5=878dcd8045425e083e05c87139d8d1c1CAS |