Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Fire regime from 1973 to 2011 in north-western Patagonian grasslands

Facundo José Oddi A B and Luciana Ghermandi A
+ Author Affiliations
- Author Affiliations

A Laboratorio Ecotono, Universidad Nacional del Comahue – Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Biodiversidad y Medioambiente, Quintral 1250, 8400 Bariloche, Argentina.

B Corresponding author. Email: foddi@unrn.edu.ar

International Journal of Wildland Fire 25(9) 922-932 https://doi.org/10.1071/WF15211
Submitted: 5 December 2015  Accepted: 24 May 2016   Published: 18 July 2016

Abstract

Fire is one of the most important disturbances in terrestrial ecosystems and has major ecological and socioeconomic impacts. Fire regime describes the variation of individual fire events in time and space. Few studies have characterised the fire regime in grasslands in spite of the importance of these ecosystems. The aim of this study was to describe the recent fire regime (from 1973 to 2011) of north-western Patagonian grasslands in terms of seasonality, frequency and burned area. Our study area covered 560 000 ha and we used a remote sensing approach combined with statistics obtained from operational databases. Fires occur during the summer in 2 of every 3 years with a frequency of 2.7 fires per year and a mean size of 823 ha. Fire size distribution is characterised by many small fires and few large ones which would respond to a distribution from the power law family. Eighty per cent of the total area affected by fire was burned in the span of a few years, which were also widespread fire years in forests and woodlands of north-western Patagonia. This work contributes to general knowledge about fire regimes in grasslands and we expect that our results will serve as a reference to further fire regime research.


References

Agee JK (1993) ‘Fire ecology of Pacific Northwest forests’. (Island: Washington, DC)

Arno SF, Petersen TD (1983) Variation in estimates of fire intervals: a closer look at fire history on the Bitterroot National Forest. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper, INT-301. (Ogden, UT)

Bajocco S, Ricotta C (2008) Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer? Landscape Ecology 23, 241–248.
Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer?Crossref | GoogleScholarGoogle Scholar |

Bianchi MM (2000) Historia de fuego en Patagonia. Registro de carbón vegetal sedimentario durante el post-glacial y el Holoceno en Lago Escondido (41°S–72°O). Cuaternario y Ciencias Ambientales, Publicación especial 1, 23–36.

Bird RB, Codding BF, Kauhanen PG, Bird DW (2012) Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proceedings of the National Academy of Sciences of the United States of America 109, 10287–10292.
Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWgt73K&md5=a7fccb6a6c8ffbd9e761733629288773CAS |

Bond WJ, Keeley JE (2005) Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20, 387–394.
Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems.Crossref | GoogleScholarGoogle Scholar |

Bond WJ, van Wilgen BW (1996) ‘Fire and Plants’. (Chapman & Hall: London)

Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist 165, 525–538.
The global distribution of ecosystems in a world without fire.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fpt1OktQ%3D%3D&md5=8739cb4b707ce3d9c87c4c725b995a18CAS | 15720663PubMed |

Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, Defries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324, 481–484.
Fire in the Earth system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVGmtb8%3D&md5=780bfbd84d8f3d0390bfe1cab7be1fd6CAS | 19390038PubMed |

Brown JK (2000) Ecological principles, shifting fire regimes and management considerations. In ‘Wildland fire in ecosystems: effects of fire on flora’. (Eds JK Brown, JK Smith JK) pp. 185–203. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42, Volume 2. (Ogden, Utah)

Chuvieco E, Martín MP, Palacios A (2002) Assessment of different spectral indices in the red-near infrared spectral domain for burned land discrimination. International Journal of Remote Sensing 23, 5103–5110.
Assessment of different spectral indices in the red-near infrared spectral domain for burned land discrimination.Crossref | GoogleScholarGoogle Scholar |

Chuvieco E, Giglio L, Justice C (2008) Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology 14, 1488–1502.
Global characterization of fire activity: toward defining fire regimes from Earth observation data.Crossref | GoogleScholarGoogle Scholar |

Cibils AF, Borrelli PR (2005) Grasslands of Patagonia. In ‘Grasslands of the World’. (Eds JM Suttie, SG Reynolds, C Batello) pp. 121–170. (FAO Plant Production and Protection, Series FAO: Rome)

Cleland DT, Crow TR, Saunders SC, Dickmann DI, Maclean AL, Jordan JK, Watson RL, Sloan AM, Brosofske KD (2004) Characterizing historical and modern fire regimes in Michigan (USA): a landscape ecosystem approach. Landscape Ecology 19, 311–325.
Characterizing historical and modern fire regimes in Michigan (USA): a landscape ecosystem approach.Crossref | GoogleScholarGoogle Scholar |

Cui W, Perera AH (2008) What do we know about forest fire size distribution, and why is this knowledge useful for forest management? International Journal of Wildland Fire 17, 234–244.
What do we know about forest fire size distribution, and why is this knowledge useful for forest management?Crossref | GoogleScholarGoogle Scholar |

D’Antonio CM, Vitousek PM (1992) Biological invasion by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23, 63–87.
Biological invasion by exotic grasses, the grass/fire cycle, and global change.Crossref | GoogleScholarGoogle Scholar |

del Valle HF, Novara M, Rostagno CM, Defossé GE, Coronato FR (2004) Cartografía de áreas quemadas con sensores remotos ópticos y de radar en ecosistemas secos del noreste de Patagonia Central. In ‘Teledetección aplicada a la problemática ambiental Argentina’. (Eds SM Navone, HG Rosatto, F Vilella) pp. 1–16. (CIATE-FAUBA, Orientación Gráfica Editora SRL: Buenos Aires)

Dubinin M, Potapov P, Lushchekina A, Radeloff VC (2010) Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sensing of Environment 114, 1638–1648.
Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing.Crossref | GoogleScholarGoogle Scholar |

Falk DA, Swetnam TW (2003) Scaling rules and probability models for surface fire regimes in Ponderosa pine forests. In ‘Fire, fuel treatments, and ecological restoration’. (Eds PN Omi, LA Joyce) pp. 301–317. (USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO)

Falk DA, Miller C, McKenzie D, Black AE (2007) Cross-Scale Analysis of Fire Regimes. Ecosystems 10, 809–823.
Cross-Scale Analysis of Fire Regimes.Crossref | GoogleScholarGoogle Scholar |

Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. The Science of the Total Environment 262, 221–229.
Climate change and forest fires.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotleru78%3D&md5=bcaefc68de228ba35fa8b7462aee031aCAS | 11087028PubMed |

Franzese J, Ghermandi L (2011) Seed longevity and fire: germination responses of an exotic perennial herb in NW Patagonian grasslands (Argentina). Plant Biology 13, 865–871.
Seed longevity and fire: germination responses of an exotic perennial herb in NW Patagonian grasslands (Argentina).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MfpvFKltg%3D%3D&md5=06c83e086b408b130588997b4acd10dcCAS | 21973326PubMed |

Franzese J, Ghermandi L, Bran D (2009) Postfire shrub recruitment in a semi-arid grassland: the role of microsites. Journal of Vegetation Science 20, 251–259.
Postfire shrub recruitment in a semi-arid grassland: the role of microsites.Crossref | GoogleScholarGoogle Scholar |

Fraser RH, Li Z (2002) Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sensing of Environment 82, 95–110.
Estimating fire-related parameters in boreal forest using SPOT VEGETATION.Crossref | GoogleScholarGoogle Scholar |

Gedalof Z (2011) Climate and spatial patterns of wildfire in North America. In ‘The landscape ecology of fire’ (Eds D McKenzie, C Miller, DA Falk) pp. 89–115. (Springer: Dordrecht)

Ghermandi L, Guthmann N, Bran D (2004) Early post-fire succession in northestern Patagonia grasslands. Journal of Vegetation Science 15, 67–76.
Early post-fire succession in northestern Patagonia grasslands.Crossref | GoogleScholarGoogle Scholar |

Ghermandi L, de Torres Curth MI, Franzese J, Gonzalez S (2010) Non-linear ecological processes, fires, environmental heterogeneity and shrub invasion in northwestern Patagonia. Ecological Modelling 221, 113–121.
Non-linear ecological processes, fires, environmental heterogeneity and shrub invasion in northwestern Patagonia.Crossref | GoogleScholarGoogle Scholar |

Gonzalez SL, Ghermandi L, Peláez DV (2015) Growth and reproductive post-fire responses of two shrubs in semiarid Patagonian grasslands. International Journal of Wildland Fire 24, 809–818.
Growth and reproductive post-fire responses of two shrubs in semiarid Patagonian grasslands.Crossref | GoogleScholarGoogle Scholar |

Henwood W (1998) An overview of protected areas in the temperate grasslands biome. Parks 8, 3–8. [Verified 2 June 2016]http://cmsdata.iucn.org/downloads/parks_oct98_1.pdf

Heredia A, Martínez S, Quintero E, Piñeros W, Chuvieco E (2003) Comparación de distintas técnicas de análisis digital para la cartografía de áreas quemadas con imágenes Landsat ETM+. GeoFocus 3, 216–234. [Verified 2 June 2016]http://geofocus.rediris.es/docPDF/Articulo12_2003.pdf

Hudak AT, Brockett BH (2004) Mapping fire scars in a southern African savanna using Landsat imagery. International Journal of Remote Sensing 25, 3231–3243.
Mapping fire scars in a southern African savanna using Landsat imagery.Crossref | GoogleScholarGoogle Scholar |

Keeley JE, Fotheringham CJ, Morais M (1999) Reexamining fire suppression impacts on brushland fire regimes. Science 284, 1829–1832.
Reexamining fire suppression impacts on brushland fire regimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFSqsL4%3D&md5=d41b1dd6d9552dffc8aa58d12cc954f3CAS | 10364554PubMed |

Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) ‘Fire in mediterranean ecosystems: ecology, evolution and management’. (Cambridge University Press: Cambridge, UK)

Kilgore B (1981) Fire in ecosystem distribution and structure: western forests and scrublands. In ‘Proceedings of the conference: fire regimes and ecosystem properties’. (Eds HA Mooney, TM Bonnicksen, NL Christensen) pp. 58–89. USDA Forest Service, General Technical Report WO-GTR-26. (Ogden, Utah)

Kitzberger T (2002) ENSO as a forewarning tool of regional fire occurrence in northern Patagonia, Argentina. International Journal of Wildland Fire 11, 33–39.
ENSO as a forewarning tool of regional fire occurrence in northern Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Kitzberger T (2003) Regímenes de fuego en el gradiente Bosque-Estepa del noroeste de Patagonia: Variación espacial y tendencia temporal. In ‘Fuego en los ecosistemas argentinos’. (Eds C Kunst, S Bravo, J Panigatti) pp. 79–92. (Ediciones INTA: Santiago del Estero)

Kitzberger T, Veblen TT, Swetnam TW (2001) Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Global Ecology and Biogeography 10, 315–326.
Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation.Crossref | GoogleScholarGoogle Scholar |

Krawchuk MA, Moritz MA (2014) Burning issues: statistical analyses of global fire data to inform assessments of environmental change. Environmetrics 25, 472–481.
Burning issues: statistical analyses of global fire data to inform assessments of environmental change.Crossref | GoogleScholarGoogle Scholar |

Krebs P, Pezzatti GB, Mazzoleni S, Talbot LM, Conedera M (2010) Fire regime: history and definition of a key concept in disturbance ecology. Theory in Biosciences 129, 53–69.
Fire regime: history and definition of a key concept in disturbance ecology.Crossref | GoogleScholarGoogle Scholar | 20502984PubMed |

Lemaire G, Horddgson J, Chabbi A (2011) ‘Grassland productivity and ecosystem services’. (CAB International: Wallingford, UK)

León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de Patagonia extra andina. Ecología Austral 8, 125–144. [Verified 2 June 2016]http://www.ecologiaaustral.com.ar/files/8-2-4.pdf

Lloret F (2004) Régimen de incendios y regeneración. In ‘Ecología del bosque mediterráneo en un mundo cambiante’. (Ed. F Valladares) pp. 101–126. (Ministerio de Medio Ambiente: Madrid)

Lohman DJ, Bickford D, Sodhi NS (2007) Policy forum: the burning issue. Science 316, 376
Policy forum: the burning issue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslyqs7c%3D&md5=3aa25767234580b2214eb3bece4b293bCAS | 17446376PubMed |

Markham BL, Storey JC, Williams DL, Irons JR (2004) Landsat sensor performance: history and current status. IEEE Transactions on Geoscience and Remote Sensing 42, 2691–2694.
Landsat sensor performance: history and current status.Crossref | GoogleScholarGoogle Scholar |

McKenzie D, Kennedy MC (2011) Scaling Laws and Complexity in Fire Regimes. In ‘The landscape ecology of fire’. (Eds D McKenzie, C Miller, DA Falk) pp. 27–49. (Springer: Dordrecht, Netherlands)

Meyn A, White PS, Buhk C, Jentsch A (2007) Environmental drivers of large, infrequent wildfires: the emerging conceptual model. Progress in Physical Geography 31, 287–312.
Environmental drivers of large, infrequent wildfires: the emerging conceptual model.Crossref | GoogleScholarGoogle Scholar |

Montenegro G, Ginocchio R, Segura A, Keeley J, Gomez M (2004) Fire regimes and vegetation responses in two Mediterranean-climate regions. Revista Chilena de Historia Natural (Valparaiso, Chile) 77, 455–464.
Fire regimes and vegetation responses in two Mediterranean-climate regions.Crossref | GoogleScholarGoogle Scholar |

Moreno Ruiz JA, Riaño D, Arbelo M, French NHF, Ustin SL, Whiting ML (2012) Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: a comparison with other remote sensing products and fire perimeters. Remote Sensing of Environment 117, 407–414.
Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: a comparison with other remote sensing products and fire perimeters.Crossref | GoogleScholarGoogle Scholar |

Morgan P, Hardy CC, Swetnam TW, Rollins MG, Long DG (2001) Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire 10, 329–342.
Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns.Crossref | GoogleScholarGoogle Scholar |

Oddi F, Ghermandi L (2015) Dendroecological potential of shrubs for reconstructing fire history at landscape scale in Mediterranean-type climate grasslands: the case of Fabiana imbricata. Dendrochronologia 33, 16–24.
Dendroecological potential of shrubs for reconstructing fire history at landscape scale in Mediterranean-type climate grasslands: the case of Fabiana imbricata.Crossref | GoogleScholarGoogle Scholar |

Oddi FJ, Dudinszky N, Ghermandi L (2010) Spatial dynamics of Fabiana imbricata shrublands in northwestern Patagonia in relation to natural fires. Natural Hazards and Earth System Sciences 10, 957–966.
Spatial dynamics of Fabiana imbricata shrublands in northwestern Patagonia in relation to natural fires.Crossref | GoogleScholarGoogle Scholar |

Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110, 215–226.
Fire regime changes in the western Mediterranean Basin: from fuel-limited to drought-driven fire regime.Crossref | GoogleScholarGoogle Scholar |

Pausas JG, Ribeiro E (2013) The global fire–productivity relationship. Global Ecology and Biogeography 22, 728–736.
The global fire–productivity relationship.Crossref | GoogleScholarGoogle Scholar |

Pereira JMC (2003) Remote sensing of burned areas in tropical savannas. International Journal of Wildland Fire 12, 259–270.
Remote sensing of burned areas in tropical savannas.Crossref | GoogleScholarGoogle Scholar |

Pereira JMC, Chuvieco E, Beaudoin A, Desbois N (1997) Remote sensing of burned areas: a review. In ‘A review of remote sensing methods for the study of large wildfires’. (Ed. E Chuvieco) pp. 127–183. (Universidad de Alcalá: Madrid, Spain)

Romero-Calcerrada R, Novillo CJ, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology 23, 341–354.
GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain).Crossref | GoogleScholarGoogle Scholar |

Romme WH (1980) Fire history terminology: report of the ad hoc committee. In ‘Proceedings of the fire history workshop’, 20–24 October 1980. Tucson, Arizona. (Eds MA Stokes, JH Dieterich) pp. 135–137. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, General Technical Report RM-GTR-81. (Fort Collins, CO)

Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment 112, 3690–3707.
The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product.Crossref | GoogleScholarGoogle Scholar |

Sá ACL, Pereira JMC, Silva JMN (2005) Estimation of combustion completeness based on fire-induced spectral reflectance changes in a dambo grassland (Western Province, Zambia). International Journal of Remote Sensing 26, 4185–4195.
Estimation of combustion completeness based on fire-induced spectral reflectance changes in a dambo grassland (Western Province, Zambia).Crossref | GoogleScholarGoogle Scholar |

Schepers L, Haest B, Veraverbeke S, Spanhove T, Vanden Borre J, Goossens R (2014) Burned area detection and burn severity assessment of a heathland fire in Belgium using airborne imaging spectroscopy (APEX). Remote Sensing 6, 1803–1826.
Burned area detection and burn severity assessment of a heathland fire in Belgium using airborne imaging spectroscopy (APEX).Crossref | GoogleScholarGoogle Scholar |

Skinner CN, Chang C (1996) Fire regimes, past and present. In ‘Sierra Nevada ecosystem project: final report to congress. Volume 2’. (Ed. DC Erman) pp. 1041–1069. (University of California Centers for Water and Wildland Resources: Davis, CA).

Soriano A (1956) Los distritos florísticos de la Provincia Patagónica. Revista de Investigaciones Agropecuarias 10, 323–347.

Srur AM, Villalba R, Baldi G (2011) Variations in Anarthrophyllum rigidum radial growth, NDVI and ecosystem productivity in the Patagonian shrubby steppes. Plant Ecology 212, 1841–1854.
Variations in Anarthrophyllum rigidum radial growth, NDVI and ecosystem productivity in the Patagonian shrubby steppes.Crossref | GoogleScholarGoogle Scholar |

Sunar F, Ozkan C (2001) Forest fire analysis with remote sensing data. International Journal of Remote Sensing 22, 2265–2277.
Forest fire analysis with remote sensing data.Crossref | GoogleScholarGoogle Scholar |

Sunderman SO, Weisberg PJ (2011) Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems. Remote Sensing of Environment 115, 2384–2389.
Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems.Crossref | GoogleScholarGoogle Scholar |

Syphard AD, Keeley JE (2015) Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire 24, 37–47.
Location, timing and extent of wildfire vary by cause of ignition.Crossref | GoogleScholarGoogle Scholar |

Vázquez A, Moreno JM (1995) Patterns of fire occurrence across a climatic gradient and its relationship to meteorological variables in Spain. In ‘Global change and Mediterranean-type ecosystems’. (Eds JM Moreno, WC Oechel). pp. 408–34. Ecological Studies 117. (Springer: New York)

Veblen TT, Kitzberger T, Raffaele E, Mermoz M, González ME, Sibold JS, Holz A (2008) The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region. International Journal of Wildland Fire 17, 724–741.
The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region.Crossref | GoogleScholarGoogle Scholar |

Vogl RJ (1974) Effects of fire on grasslands. In ‘Fire and ecosystems’. (Eds TT Kozlowski, CE Ahlgren) pp. 139–194. (Academic Press: New York)

Westerling A, Gershunov LA, Cayan DR, Barnett TP (2002) Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province. International Journal of Wildland Fire 11, 257–266.
Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province.Crossref | GoogleScholarGoogle Scholar |

White JD, Ryan KC, Key CC, Running SW (1996) Remote Sensing of Forest Fire Severity and Vegetation Recovery. International Journal of Wildland Fire 6, 125–136.
Remote Sensing of Forest Fire Severity and Vegetation Recovery.Crossref | GoogleScholarGoogle Scholar |