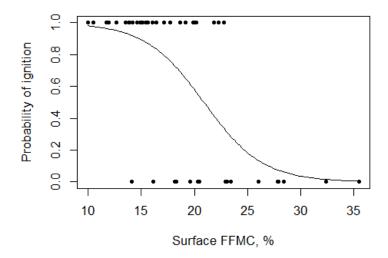

Supplementary material

Forest fuel bed ignitability under marginal fire weather conditions in *Eucalyptus* forests


Jane G. Cawson^{A,B} and Thomas J. Duff^A

^ASchool of Ecosystem and Forest Sciences, University of Melbourne, Burnley Campus, 500 Yarra Boulevard, Richmond, Vic. 3121, Australia.

^BCorresponding author. Email: jane.cawson@unimelb.edu.au

Fig. S1. Forest types included in the study. (a) Dry eucalypt forest; (b) Damp eucalypt forest; and (c) Wet eucalypt forest. These photos depict typical near-surface and elevated fuels within each forest type.

Fig. S2. Data points and single parameter logistic regression model showing ignition probability as a function of surface fine-fuel moisture content (FFMC).

Table S1. Summary of fuel attributes as a function of forest type

Mean values are shown for fuel moisture contents and ranges for fuel hazard scores. FFMC, fine-fuel moisture content

Forest type	Surface FFMC	Subsurface FFMC	Dead elevated FFMC	Live FFMC	Surface fuel hazard	Overall fuel hazard
Dry eucalypt forest	16 (4)	49 (40)	19 (9)	126 (30)	1–5	2–5
Damp eucalypt forest	22 (6)	115 (50)	20 (9)	162 (24)	1–5	4–5
Wet eucalypt forest	26 (2)	103 (19)	19 (1)	189 (13)	3–5	4–5