Supplementary material for

Comparison of vapour-exchange methods for predicting hourly twig fuel moisture contents of Larch and Birch stands in Daxinganling Region, China

Hongzhou Yu^{A,B}, Lifu Shu^B, Guang Yang^A and Jifeng Deng^{C,D,E,F}

^ACollege of Forestry, Northeast Forestry University, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Hexing St. 26, Harbin, Heilongjiang Province 150040, People's Republic of China.

^BResearch Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, People's Republic of China.

^cCollege of Forestry, Shenyang Agricultural University, Dongling St. 120, Shenyang,

Liaoning Province 110866, People's Republic of China.

^DKey Laboratory of Forest Tree genetics and Breeding of Liaoning Province, Dongling St. 120, Shenyang, Liaoning Province 110866, People's Republic of China.

^EResearch Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network, Shenyang Agricultural University, Dongling St. 120, Shenyang, Liaoning Province 110866, People's Republic of China.

^FCorresponding author. Email: jifeng-deng@syau.edu.cn Telephone number: +8615840147953

Supplementary Appendix SA: Materials and methods

Field experiment

The study area was located at the Pangu Forest Farm, Tahe Forestry Bureau, Daxinganling Region, China (Fig. S1), with an elevation range between 300 to 900 mm. Annual mean rainfall is 430 mm, and annual mean temperature is 2.88° C with highest temperature is 35.2° C (in July of the year). The zonal soil is Umbri-Gelic Cambosols (Cooperative Research Group on Chinese Soil Taxonomy, Chinese Soil Taxonomy). The dominate vegetation in the study area consists largely of *Larix gmelinii* and *Betula platyphylla*.

Fig. S1. Geographical research site in this study.

Model evaluation and description

In this research, two τ models were used: The Nelson Eq. (1) and Simard Eq. (2) functions were described in literatures (Simard 1968; Catchpole *et al.* 2001).

The Nelson equation is given by:

$$E = \alpha + \beta \ln(-RT_a / m \ln RH) \tag{1}$$

where E is equilibrium moisture content (%), R is the gas constant (8.314 J.mol⁻¹.K⁻¹), m is the

molecular mass of water (18.015 g.mol⁻¹), and α and β are the empirically determined parameters.

The Simard equation is given by:

$$E = \begin{cases} 0.03 + 0.2626RH - 0.00104RHT_a & \text{(if } RH < 10) \\ 1.76 + 0.1601RH - 0.0266T_a & \text{(if } 10 \le RH < 50) \\ 21.06 - 0.4944RH + 0.005565RH^2 - 0.00063RHT_a & \text{(if } RH > 50) \end{cases}$$
(2)

The direct regression model is a multiple linear model in the following form see Eq. (3). The direct regression model is given by:

$$M(T_i) = b_0 + b_1 T_i + b_2 T_i + b_3 T_i + b_4 T_i$$
(3)

where T_i is the weather variable for the current temperature (°C). b_0 - b_4 are the estimated parameters.

Data processing

To improve the accuracy of modelling, a 1-h interval was used for modelling. Moisture contents above 35%, i.e., the fibre saturation point, were also included in the analysis to simulate the FMC of twigs under the field conditions. In previous experiments, modelling avoided the problems caused by condensation and precipitation effects for fire behaviour based on a 24 h sampling period (Nelson 2000). Thus, the variation of meteorological factors reached a stable state in a broader time range of 24 h. In this study, these effects were considered for practical uses, and models were developed with an adequate accuracy of 1% (Trevitt 1991) based on 1-hour intervals; this was done to realize close to real-time and real-situation fuel moisture predictions as required by hazard reduction burning. Two rainfall events were observed during the experimental period. A rainfall intensity of 0.20 mm h^{-1} occurred in plots 1, 2, 5, and 6 and lasted during the sampling sequence of 32–47, and a rainfall intensity of 0.10 mm h^{-1} occurred in plots 3, 4, 7, and 8 and lasted during the sampling sequence of 24–39; the average diameter of each rain drop was less than 0.75 mm.

For each of the 48 datasets (multiply eight plots by three diameter classes and two degree of

decay), parameters were estimated using the τ methods and the direct regression method, yielding 48 different models. Nonlinear regression was conducted using MATLAB 6.1 (MathWorks, Natick, MA, USA). The parameters for the direct regression model were estimated by the forward stepwise regression method. Plotting was completed with the OriginLab's OriginPro 9.0 software (OriginLab Inc., Northampton, MA, USA). For each of the datasets with a sample size of *n*, *n*-fold cross validations were used to compute model accuracy. The mean absolute error (MAE) and mean relative error (MRE) were then computed for each model:

$$MRE = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{M_i - M'_i}{M_i} \right]$$
(4)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left[M_{i} - M_{i}^{'} \right]$$
(5)

where M_i and M'_i are the observed and predicted fuel moisture content values for *i* validation, respectively, *n* is the number of observations (*n*=80).

Each model was estimated using the two vapour-exchange methods, and one regression method applied to the other plots of larch and birch stands for extrapolation analysis, the variation coefficient (VC) of the model parameters obtained from the *n*-fold cross validations of the model were calculated (n=132). For each of the methods, the minimum, maximum and VC of the MAEs and MREs were computed.

To test whether EMC model parameters varied with fuel types and categories, we reclassified these plots into two general treatment groups based on the larch/birch ratio (plots 1–4 (larch) and plots 5–8 (birch)), then the models were obtained for each treatment (two levels of larch/birch ratio (72 models for each level), two levels of decay classes (36 models for each level), and three levels of fuel diameter classes (24 models for each level)). Finally, the model parameters values were

averaged and then the standard errors were also obtained and compared, thus, model performance for each of these treatments can be reported, so we can understand if the models work better or worse for each of the treatment levels.

Supporting references

- Catchpole EA, Catchpole WR, Viney NR, McCaw WL, Marsden-Smedley JB (2001) Estimating fuel response time and predicting fuel moisture content from field data. *International Journal of Wildland Fire* **10**, 215–222. doi: 10.1071/WF01011
- Cooperative Research Group on Chinese Soil Taxonomy (CRGCST), Institude of Soil Science,
 Chinese Academy of Sciences, Cooperative Reaserch Group on Chinese Soil Taxonomy.
 (2001) Keys to Chinese Soil Taxonomy (In Chinese). 3rd ed. Hefei: University of Science and Technology of China Press, Beijing, 246-247.
- Nelson RM (2000) Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research **30**, 1071–1087. doi:10.1139/X00-032
- Simard AJ (1968) The moisture content of forest fuels. I. A review of basic concepts. Information Report FF-X-14, Forest and Fire Research Institute, Forestry Branch, Department of Forestry and Rural Development. (Ottawa, ON).
- Trevitt ACF (1991) Weather parameters and fuel moisture content: standards for fire model inputs. In 'Proceedings of the Conference on Bushfire Modelling and Fire Danger Rating Systems', 11–12 July 1988, Canberra, ACT. (Eds NP Cheney, AM Gill) (CSIRO Division of Forestry: Canberra, ACT)

Supplementary Appendix SB: Results of variations of temperature, relative humidity and fuel moisture change in sampling sites

Fig. S2. Dynamics of measured fuel moisture contents and variation changes of measured air temperature and relative humidity in sampling plots. The number of observations is 80. BD is badly decomposed twigs; LD is lightly decomposed twigs. Diameter classes were divided into

0.0-0.6 cm (fine), 0.7-2.5 cm (medium-sized), and 2.6-7.6 cm (thick),

The sampling sequences and moisture contents were remaining consistent; the time was from 10:00– 17:00 in the daytime (10 consecutive days). The temperature averaged 7.7°C, 8.6°C, 8.5°C, 7.8°C, 8.1°C, 8.9°C, 8.6°C and 7.7°C, and the relative humidity averaged 0.43, 0.40, 0.56, 0.60, 0.42, 0.41, 0.51 and 0.55 in plots 1 to 8. Plot1: upper position of south-facing slope; Plot2: middle position of south-facing slope; Plot3: lower position of south-facing position; Plot4: lower position of north-facing slope; Plot5: upper position of south-facing slope; Plot6: middle position of south-facing slope; Plot7: lower position of south-facing position; Plot8: lower position of north-facing slope. Parameters for models established using the Nelson method is defined in Eq. (1). MAE is mean absolute error, MRE is mean relative error. τ is time lag. α and β are empirically parameters. R^2 is the coefficient of determination.

Supplementary Appendix SC: Accuracy of all the models for the three methods

Fig. S3. Dynamics of predicted fuel moisture contents with Nelson models in sampling plots.

Fig. S4. Dynamics of predicted fuel moisture contents with Simard models in sampling plots.

Fig. S5. Dynamics of predicted fuel moisture contents with direct regression models in sampling

plots.

Supplementary Appendix SD: Parameterization of Nelson, Simard, and direct regression models

n	Fuel category	MAE	MRE	α	β	τ	R^2
	fine BD	0.00930	0.0543	0.638	-0.110	4.809	0.986
	medium-sized BD	0.00710	0.0361	0.658	-0.116	7.996	0.994
~	thick BD	0.00310	0.0190	0.357	-0.0565	7.255	0.992
Plot1	fine LD	0.00550	0.0338	0.369	-0.0535	5.273	0.988
	medium-sized LD	0.00180	0.0116	0.0867	-0.00370	5.219	0.989
	thick LD	0.00120	0.00850	0.155	-0.00770	8.122	0.987
	fine BD	0.00920	0.0431	0.880	-0.164	9.186	0.995
	medium-sized BD	0.00200	0.0139	0.307	-0.043	11.989	0.995
	thick BD	0.00170	0.0139	0.0438	-0.000100	14.218	0.994
Plot2	fine LD	0.00370	0.0202	0.266	-0.0253	5.124	0.990
	medium-sized LD	0.00140	0.00890	0.209	-0.0176	8.986	0.996
	thick LD	0.00130	0.0100	0.177	-0.0176	12.263	0.997
	fine BD	0.00740	0.0296	0.623	-0.0995	13.704	0.980
	medium-sized BD	0.00710	0.0230	2.390	-0.497	7.502	0.825
	thick BD	0.00960	0.0236	0.622	-0.0988	13.178	0.998
Plot3	fine LD	0.0117	0.0379	0.996	-0.190	15.573	0.991
	medium-sized LD	0.00560	0.0219	0.871	-0.163	28.763	0.994
	thick LD	0.00930	0.0291	0.712	-0.137	7.169	0.995
	fine BD	0.0236	0.0643	0.929	-0.164	3.993	0.964
	medium-sized BD	0.00810	0.0331	0.679	-0.118	10.566	0.987
D1 14	thick BD	0.0110	0.0378	0.681	-0.0966	13.695	0.997
Plot4	fine LD	0.0277	0.0827	0.630	-0.0886	3.955	0.844
	medium-sized LD	0.00920	0.0354	0.678	-0.115	12.234	0.983
	thick LD	0.00660	0.0349	0.371	-0.0522	6.938	0.953
	fine BD	0.0113	0.0556	0.517	-0.0808	3.308	0.980
	medium-sized BD	0.00310	0.0212	0.264	-0.0328	6.867	0.989
D1 (5	thick BD	0.00260	0.0125	0.332	-0.0409	11.451	0.995
Plots	fine LD	0.00610	0.0303	0.357	-0.0474	5.408	0.986
	medium-sized LD	0.00400	0.0210	0.302	-0.0369	6.629	0.989
	thick LD	0.00290	0.0152	0.293	-0.0362	11.552	0.995
	fine BD	0.00940	0.0516	0.471	-0.0701	1.983	0.972
	medium-sized BD	0.00570	0.0439	0.299	-0.0403	2.462	0.965
D1-46	thick BD	0.00380	0.0303	0.356	-0.0565	7.255	0.990
Ploto	fine LD	0.0208	0.0213	1.663	-0.180	2.743	0.980
	medium-sized LD	0.00230	0.0162	0.175	-0.0113	3.752	0.968
	thick LD	0.00260	0.0142	0.230	-0.0203	16.784	0.995
	fine BD	0.0205	0.0586	1.056	-0.175	5.174	0.965
	medium-sized BD	0.0142	0.0167	2.456	-0.396	7.075	0.960

Table S1. Estimated parameters and errors of models established using the Nelson method

	(1: 1 DD	0.0112	0.00000	2 002	0.400	10 700	0.077
	thick BD	0.0113	0.00990	2.992	-0.486	12.788	0.967
Plot7	fine LD	0.0148	0.0451	1.017	-0.177	6.046	0.969
	medium-sized LD	0.00730	0.0287	0.688	-0.111	8.694	0.978
	thick LD	0.00430	0.0179	0.712	-0.118	15.236	0.990
	fine BD	0.0187	0.0310	4.713	-0.971	33.880	0.995
	medium-sized BD	0.00740	0.0187	1.268	-0.212	20.727	0.983
D1 (0	thick BD	0.00590	0.0201	0.906	-0.152	18.231	0.987
Plot8	fine LD	0.0181	0.0405	1.443	-0.253	11.181	0.984
	medium-sized LD	0.0102	0.0369	0.733	-0.121	9.619	0.967
	thick LD	0.00900	0.0397	0.482	-0.0687	7.240	0.916
Mean		0.00834	0.0297				0.977

n	Fuel category	MAE	MRE	τ	R^2
	fine BD	0.00870	0.0504	11.080	0.979
	medium-sized BD	0.00630	0.0327	13.654	0.991
D1-+1	thick BD	0.00320	0.0204	16.670	0.991
P1011	fine LD	0.00630	0.0406	8.976	0.987
	medium-sized LD	0.00230	0.0142	26.029	0.990
	thick LD	0.00130	0.00920	64.126	0.980
	fine BD	0.00980	0.0417	13.132	0.99
	medium-sized BD	0.00230	0.0160	16.168	0.99
D1 - 0	thick BD	0.00140	0.0125	15.411	0.99
Plot2	fine LD	0.00480	0.0267	15.701	0.98
	medium-sized LD	0.00200	0.0129	25.401	0.99
	thick LD	0.00140	0.0110	21.506	0.99
	fine BD	0.00680	0.0273	35.152	0.97
	medium-sized BD	0.00690	0.0255	-11443.208	0.99
	thick BD	0.0108	0.0294	-167.499	0.99
Plot3	fine LD	0.0134	0.0433	29.768	0.98
	medium-sized LD	0.00590	0.0240	46.038	0.99
	thick LD	0.00960	0.0283	320.812	0.99
	fine BD	0.0292	0.0757	15.208	0.92
	medium-sized BD	0.00920	0.0360	19.588	0.97
	thick BD	0.0133	0.0525	-384.377	0.99
Plot4	fine LD	0.0256	0.0683	13.175	0.81
	medium-sized LD	0.00990	0.0362	23.646	0.97
	thick LD	0.00700	0.0380	10.473	0.94
	fine BD	0.0121	0.0621	6.471	0.97
	medium-sized BD	0.00400	0.0275	10.668	0.98
~ .	thick BD	0.00330	0.0165	20.740	0.99
Plot5	fine LD	0.00670	0.0367	10.200	0.98
	medium-sized LD	0.00470	0.0277	12.532	0.98
	thick LD	0.00320	0.0180	18.126	0.99
	fine BD	0.0108	0.0628	6.846	0.96
	medium-sized BD	0.00600	0.0489	7.066	0.95
	thick BD	0.00390	0.0304	8.720	0.98
Plot6	fine LD	0.0238	0.0251	44.116	0.97
	medium-sized LD	0.00210	0.0154	74.517	0.96
	thick LD	0.00280	0.0150	32.059	0.99
	fine BD	0.0217	0.0556	18.171	0.942
	medium-sized BD	0.0145	0.0165	172.741	0.98
	thick BD	0.0118	0.0104	480 892	0.97

 Table S2.
 Estimated parameters and errors of models established using Simard method

Parameters for models established using the Simard method is defined in Eq. (2).

Plot7	fine LD	0.0163	0.0509	18.102	0.951
	medium-sized LD	0.00810	0.0323	25.974	0.965
	thick LD	0.00490	0.0210	30.779	0.984
	fine BD	0.0218	0.0377	99.042	0.989
Plot8	medium-sized BD	0.00690	0.0174	133.045	0.972
	thick BD	0.00600	0.0207	53.797	0.976
	fine LD	0.0180	0.0379	37.239	0.973
	medium-sized LD	0.0105	0.0378	20.616	0.951
	thick LD	0.00840	0.0366	18.389	0.897
Mean		0.00895	0.0320		0.974

Table S3. Estimated parameters and errors of models established using direct regression method

Parameters for models established using the direct regression method is defined in Eq. (3). b_0 - b_4 are constant.

n	Fuel category	MAE	MRE	b_0	b_1	b_2	b_3	R^2
	fine BD	0.0422	0.278	-2.628	-0.00460	-0.0126	0.0136	0.770
	medium-sized BD	0.0546	0.338	-3.659	-0.00630	-0.141	0.0189	0.732
	thick BD	0.0216	0.145	-1.188	-0.00270	-0.0798	0.00710	0.713
Plot1	fine LD	0.0304	0.205	-1.649	-0.00130	0.0286	0.00710	0.754
	medium-sized LD	0.0159	0.102	-0.536	-0.000900	-0.0456	0.00310	0.608
	thick LD	0.00760	0.0578	-0.158	-0.000100	-0.00660	0.00110	0.602
	fine BD	0.0889	0.525	-8.418	0.00360	0.0521	0.0253	0.722
	medium-sized BD	0.0234	0.177	-1.490	-0.00110	-0.0515	0.00650	0.624
	thick BD	0.0169	0.162	-1.123	-0.00110	-0.0480	0.00520	0.598
Plot2	fine LD	0.0221	0.134	-1.362	0.00210	0.101	0.00290	0.727
	medium-sized LD	0.0154	0.106	-0.957	0.000300	0.00620	0.00330	0.675
	thick LD	0.0148	0.129	-0.832	-0.000300	-0.0166	0.00340	0.608
	fine BD	0.0559	0.280	2.052	-0.0115	-0.137	0.00480	0.505
	medium-sized BD	0.116	0.561	5.089	-0.0254	-0.379	0.00850	0.364
D1 - 0	thick BD	0.269	1.100	12.074	-0.0582	-0.937	0.0176	0.339
Plot3	fine LD	0.107	0.485	3.867	-0.0250	-0.349	0.0118	0.548
	medium-sized LD	0.0784	0.410	3.257	-0.0170	-0.260	0.00620	0.436
	thick LD	0.222	0.970	10.160	-0.0461	-0.784	0.0120	0.346
	fine BD	0.0883	0.280	1.609	-0.00480	0.134	-0.000900	0.659
	medium-sized BD	0.0691	0.368	2.205	-0.00370	0.0605	-0.00370	0.480
	thick BD	0.197	1.189	5.691	-0.00430	0.242	-0.0150	0.304
Plot4	fine LD	0.0749	0.285	2.224	-0.000200	0.151	-0.00710	0.475
	medium-sized LD	0.0802	0.388	2.415	-0.000800	0.118	-0.00720	0.408
	thick LD	0.0314	0.192	0.925	-0.000600	0.0375	-0.00220	0.423
	fine BD	0.0494	0.266	-2.601	0.00980	0.369	-0.000800	0.655
	medium-sized BD	0.0232	0.165	-1.328	0.000300	0.0104	0.00450	0.673
D1 - 15	thick BD	0.0317	0.165	-1.862	-0.000500	-0.0600	0.00730	0.592
Plot5	fine LD	0.0340	0.200	-2.225	0.00300	0.118	0.00490	0.696
	medium-sized LD	0.0282	0.174	-1.690	0.00170	0.0488	0.00440	0.664
	thick LD	0.0298	0.174	-1.799	0.000100	-0.0446	0.00650	0.586
	fine BD	0.0274	0.166	-1.895	0.00640	0.320	0.000200	0.786
	medium-sized BD	0.0170	0.139	-1.174	0.00220	0.146	0.00200	0.760
DI 16	thick BD	0.0239	0.217	-1.977	0.00150	0.0944	0.00550	0.727
Plot6	fine LD	0.0775	0.0859	-5.053	0.0108	0.794	0.00840	0.778
	medium-sized LD	0.00800	0.0602	-0.480	0.00160	0.0662	0.000400	0.715
	thick LD	0.0254	0.144	-1.294	0.000100	0.0131	0.00480	0.546

	fine BD	0.0862	0.340	3.074	-0.0268	-0.482	0.0165	0.622
	medium-sized BD	0.172	0.220	6.380	-0.0310	-0.746	0.0117	0.220
D1 - 7	thick BD	0.152	0.139	5.523	-0.0237	-0.626	0.00850	0.155
Plot/	fine LD	0.0720	0.301	2.608	-0.0245	-0.454	0.0157	0.669
	medium-sized LD	0.0388	0.188	1.427	-0.0115	-0.213	0.00690	0.620
	thick LD	0.0483	0.244	2.292	-0.0133	-0.283	0.00600	0.421
	fine BD	0.325	0.806	16.706	-0.0908	-1.813	0.0350	0.359
	medium-sized BD	0.0753	0.222	3.930	-0.0224	-0.420	0.00990	0.410
N 1 - 0	thick BD	0.0548	0.217	3.137	-0.0172	-0.319	0.00710	0.462
Plot8	fine LD	0.132	0.433	6.9011	-0.0483	-0.8472	0.0250	0.558
	medium-sized LD	0.0600	0.291	3.1093	-0.0182	-0.3495	0.00800	0.495
	thick LD	0.0358	0.200	1.726	-0.0121	-0.2068	0.00660	0.524
Mean		0.0702	0.300					0.565

Supplementary Appendix SE: Assessment of model robustness

Table S4.Mean, maximum, minimum, and variation coefficient of mean absolute error(MAE) and mean relative error (MRE) estimated by extrapolation analysis of all models using

Method	Error	Mean value	Maximum value	Minimum value	Variation coefficient
Nelson	MAE	0.0268	0.385	0.00108	1.197
	MRE	0.0909	1.687	0.00790	1.148
Simard	MAE	0.0129	0.148	0.00138	0.975
	MRE	0.0380	0.129	0.00910	0.468
direct regression	MAE	0.192	1.054	0.00709	0.900
	MRE	0.838	10.700	0.0540	1.184

the Nelson, Simard, and direct regression methods

Supplementary Appendix SF: Nelson, Simard, and direct regression model parameters vary as a function of different treatments

Treatment	MAE	MRE	α	β	τ	R^2
Larch	0.00768	0.0303	0.597	-0.101	9.904	0.976
	(0.00649)	(0.0180)	(0.472)	(0.101)	(5.363)	(0.0448)
Birch	0.00901	0.0290	0.988	-0.162	9.837	0.978
	(0.00600)	(0.0144)	(1.067)	(0.208)	(7.235)	(0.0173)

Table S5. The Nelson model parameters vary as a function of larch/birch ratio

Values in the parentheses indicates standard error (n=24).

Table S6.The Simard model	odel parameters vary as a t	function of larch/birch ratio
---------------------------	-----------------------------	-------------------------------

Treatment	MAE	MRE	τ	R^2
Larch	0.00822	0.0322	36.272	0.978
	(0.00696)	0.0180	(5.363)	(0.0448)
Birch	0.000968	0.0317	56.702	0.972
	(0.00655)	(0.0154)	(99.704)	(0.0218)

Values in the parentheses indicates standard error (n=24).

Table S7.	The direct regressi	on model parameter	s vary as a function	ı of larch/birch ratio
-----------	---------------------	--------------------	----------------------	------------------------

Treatment	MAE	MRE	b_0	b_1	b_2	b_3	R^2
Larch	0.0726	0.369	4.297	0.002	0.0931	0.00880	0.559
	(0.0691)	(0.310)	(3.497)	(0.00165)	(0.0710)	(0.00654)	(0.147)
Birch	0.0678	0.232	4.734	0.00341	0.198	0.00895	0.570
	(0.0693)	(0.146)	(4.161)	(0.00384)	(0.242)	(0.00787)	(0.166)

Values in the parentheses indicates standard error (n=24).

Table S8.	The Nelson model	parameters vary	as a function	of decay classes

Treatment		MAE	MRE	α	β	τ	R^2
	BD	0.00827	0.0326	0.734	-0.130	9.841	0.976
Larch		(0.00571)	(0.0180)	(0.472)	(0.101)	(5.363)	(0.0448)
	LD	0.00708	0.0279	0.460	-0.0726	9.968	0.976
		(0.00739)	(0.0180)	(0.472)	(0.101)	(5.363)	(0.0448)
	BD	0.00949	0.0308	1.302	-0.226	10.933	0.979
Birch		(0.00593)	(0.0174)	(1.390)	(0.276)	(9.379)	(0.0126)
	LD	0.00853	0.0272	0.674	-0.0984	8.740	0.976
		(0.00630)	(0.0111)	(0.482)	(0.0754)	(4.343)	(0.0214)

Values in the parentheses indicates standard error (n=12).

Treatment		MAE	MRE	τ	R^2
	BD	0.00899	0.0350	17.340	0.984
Larch		(0.00728)	(0.0180)	(5.363)	(0.0448)
	LD	0.00746	0.0294	50.471	0.971
		(0.00686)	(0.0180)	(5.363)	(0.0448)
	BD	0.0102	0.0339	84.850	0.979
Birch		(0.00649)	(0.0191)	(136.913)	(0.0154)
	LD	0.009125	0.0295	28.554	0.968
		(0.00686)	(0.0110)	(17.664)	(0.0271)

Table S9. The Simard model parameters vary as a function of decay classes

Values in the parentheses indicates standard error (n=12).

	Table S10.	The direct regression	model	parameters vary as a	function of d	lecay classes
--	------------	-----------------------	-------	----------------------	---------------	---------------

Trea	atment	MAE	MRE	b_0	b_1	b_2	b_3	R^2
	BD	0.0869	0.450	4.787	0.00360	0.122	0.0119	0.568
Larch		(0.0761)	(0.349)	(3.956)	(0.00100)	(0.0880)	(0.00727)	(0.165)
	LD	0.0583	0.289	3.808	0.00120	0.0737	0.00565	0.551
		(0.0612)	(0.255)	(3.268)	(0.00127)	(0.0576)	(0.00397)	(0.133)
	BD	0.0865	0.255	6.458	0.00404	0.188	0.00984	0.535
Birch		(0.0906)	(0.183)	(5.192)	(0.00396)	(0.152)	(0.00948)	(0.211)
	LD	0.0492	0.208	3.010	0.00288	0.208	0.00813	0.606
		(0.0329)	(0.100)	(2.000)	(0.00403)	(0.330)	(0.00638)	(0.103)

Values in the parentheses indicates standard error (n=12).

Table S11. The Nelson model parameters vary as a function of diameter classes

Treatment		MAE	MRE	α	β	τ	R^2
	fine	0.0123	0.0457	0.666	-0.111	7.702	0.967
		(0.00868)	(0.0180)	(0.472)	(0.101)	(5.363)	(0.0448)
Larch	medium-sized	0.00529	0.0230	0.735	-0.134	11.657	0.970
		(0.00312)	(0.0180)	(0.472)	(0.101)	(5.363)	(0.0448)
	thick	0.00548	0.0221	0.390	-0.0583	10.355	0.989
		(0.00412)	(0.0180)	(0.472)	(0.101)	(5.363)	(0.0448)
	fine	0.0150	0.0418	1.405	-0.244	8.715	0.979
		(0.00550)	(0.0134)	(1.416)	(0.302)	(10.557)	(0.00983)
Birch	medium-sized	0.00678	0.0254	0.773	-0.120	8.228	0.975
		(0.00396)	(0.0102)	(0.770)	(0.130)	(5.573)	(0.0114)
	thick	0.00645	0.0234	0.800	-0.127	11.528	0.978
		(0.00414)	(0.0120)	(0.815)	(0.136)	(4.251)	(0.0242)

Values in the parentheses indicates standard error (n=8).

	Treatment	MAE	MRE	τ	R^2
	fine	0.0131	0.0168	17.774	0.956
		(0.00926)	(0.0180)	(5.363)	(0.0448)
Larch	medium-sized	0.00560	0.0247	24.360	0.989
		(0.00313)	(0.0180)	(5.363)	(0.0448)
	thick	0.00600	0.0252	74.833	0.987
		(0.00482)	(0.0180)	(5.363)	(0.0448)
	fine	0.0164	0.0461	30.023	0.969
		(0.00608)	(0.0137)	(31.126)	(0.0161)
Birch	medium-sized	0.00710	0.0279	57.145	0.971
		(0.00394)	(0.0117)	(63.684)	(0.0140)
	thick	0.00554	0.0211	82.938	0.978
		(0.00313)	(0.00853)	(161.365)	(0.0329)

 Table S12.
 The Simard model parameters vary as a function of diameter classes

Values in the parentheses indicates standard error (n=8).

Table S13.	The direct regression model	parameters vary as a functi	on of diameter classes
	7	•/	

-	Freatment	MAE	MRE	b_0	b_1	b_2	b_3	R^2
	fine	0.0637	0.309	2.438	0.00285	0.0933	0.0109	0.645
		(0.0307)	(0.132)	(0.987)	(0.00106)	(0.0523)	(0.00814)	(0.1118)
Larch	medium-sized	0.0566	0.306	3.242	0.000300	0.0616	0.00775	0.541
		(0.0362)	(0.163)	(1.313)	(0.00100)	(0.0559)	(0.00584)	(0.136)
	thick	0.0975	0.493	7.212	-0.0161	0.140	0.00773	0.492
		(0.1111)	(0.496)	(4.972)	(0.0249)	(0.145)	(0.00608)	(0.156)
	fine	0.100	0.325	7.322	0.00750	0.400	0.0151	0.640
		(0.0966)	(0.222)	(6.545)	(0.00354)	(0.284)	(0.0120)	(0.136)
Birch	medium-sized	0.0528	0.182	3.712	0.00145	0.0678	0.00598	0.570
		(0.0531)	(0.0676)	(2.062)	(0.000810)	(0.0571)	(0.00387)	(0.182)
	thick	0.0512	0.199	2.786	0.000567	0.0538	0.00749	0.530
		(0.0384)	(0.0490)	(1.474)	(0.000808)	(0.0575)	(0.00306)	(0.160)

Values in the parentheses indicates standard error (n=8).