Supplementary Material

Variability in pyrogenic carbon properties generated by different burning temperatures and peatland plant litters: implication for identifying fire intensity and fuel types

Chuanyu Gao^A, Jinxin Cong^A, Yang Sun^A, Dongxue Han^A and Guoping Wang^{A,*}

^AKey Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, Changchun 130102, China

*Correspondence to: Email: <u>wangguoping@neigae.ac.cn</u>

Wave number	Vibration	Characterization	Reference		
1030-1080	Combination of C–O stretching and O–H	Polysaccharides	(Grube et al., 2006)		
	deformation				
1425	Symmetric C-O stretching from COO- or	Carboxylate/carboxylic structures	(Artz et al., 2008)		
	stretching and OH deformation (COOH)	(humic acids)			
1515	Aromatic C=C stretching	Lignin/phenolic backbone	(Cocozza et al., 2003)		
1625	Aromatic C=C stretching and/or	Lignin and other aromatics, or	(Cocozza et al., 2003)		
	asymmetric C-O stretching in COO-	aromatic or aliphatic carboxylates			
1720	C=O stretching of COOH or COOR	Carboxylic acids, aromatic esters	(Cocozza et al., 2003)		
3437	Vibrations of H-bonded hydroxyl O-H in	Cellulose	(Cocozza et al., 2003;		
	phenols		Verchot et al., 2011)		

Table S1. Assignment of the selected principal descriptive IR absorption bands

Diant types	Low temperature				High temperature					
Plant types	Q1	Q2	Q3	T50	R50	 Q1	Q2	Q3	T50	R50
Shrubs										
Vaccinium uliginosum	32.84	40.48	22.95	419.2	0.509	3.92	30.38	48.39	496.4	0.603
Lonicera	29.76	33.44	23.92	437.4	0.531	3.97	25.33	29.00	511.8	0.622
Ledum palustre L.	39.23	45.40	14.58	404.9	0.492	9.43	40.79	24.87	466.1	0.566
Betula ovalifolia	30.20	40.49	24.39	430.7	0.523	8.91	50.34	17.89	455.5	0.553
Betula fruticosa	30.98	41.77	22.36	425.4	0.517	3.63	33.20	37.68	493.3	0.599
Salix rosmarinifolia	27.25	26.59	29.98	449.9	0.547	4.59	26.04	28.18	510.5	0.620
Rhododendron spp.	32.01	38.58	25.76	427.0	0.519	3.89	34.18	37.92	486.6	0.591
Herbs										
Carex spp.	32.61	38.59	20.53	420.7	0.511	5.12	38.78	37.96	477.5	0.580
Typha orientalis	35.64	38.60	15.39	411.2	0.500	1.76	30.57	29.52	498.0	0.605
Calamagrostis epigeios	36.62	37.08	21.07	413.3	0.502	3.83	27.26	37.66	503.9	0.612
Carex appendiculata	30.41	35.89	14.81	436.3	0.530	9.05	41.29	11.37	466.1	0.566
Eriophorum vaginatum	38.51	40.14	17.44	404.1	0.491	5.31	30.99	41.20	492.0	0.598
Deyeuxia angustifolia	33.13	36.70	17.57	421.3	0.512	5.79	26.38	25.34	512.0	0.622
Glyceria angustifolia	33.83	34.01	21.86	423.2	0.514	7.08	30.78	15.67	495.7	0.602

Table S2. Q1, Q2, Q3, T50, and R50 in low-temperature and high-temperature residual PyC for each plant.

Reference:

- Artz, R.R.E., Chapman, S.J., Jean Robertson, A.H., Potts, J.M., Laggoun-Défarge, F., Gogo, S., Comont, L., Disnar, J.-R., Francez, A.-J., 2008. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biology and Biochemistry 40, 515-527.
- Cocozza, C., D'orazio, V., Miano, T., Shotyk, W., 2003. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Organic Geochemistry 34, 49-60.
- Grube, M., Lin, J., Lee, P., Kokorevicha, S., 2006. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130, 324-333.
- Verchot, L.V., Dutaur, L., Shepherd, K.D., Albrecht, A., 2011. Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma 161, 182-193.