Supplementary Material

The dynamics of burning activity on degraded peatland in two villages in Central Kalimantan, Indonesia

Samuel Robb^{A,*}, Yanetri Asi Nion^B, Trisna Anggreini^B, Russell Richards^{C,D}, Ammar Abdul Aziz^E, Stephen Joseph^F and Paul Dargusch^{A,G}

^ASchool of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, Qld 4072, Australia

^BFaculty of Agriculture, University of Palangka Raya, Palangka Raya, Central Kalimantan, Indonesia

^CSchool of Business, University of Queensland, Brisbane, Qld, Australia

^DCoastal and Marine Research Centre, Griffith University, Gold Coast, Qld, Australia

^ESchool of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld, Australia

^FSchool of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia

^GDepartment of Geography, Universitas Negeri Malang, East Java, 65145, Indonesia

*Correspondence to: Email: samuel.robb@uq.net.au

Module	Assumption
Population	The population model assumed a simple stock and flow of births, deaths,
	immigration and emigration. Historical birth and death rates were
	assumed from Indonesian national statistics (UNPD 2019). Populations
	were calibrated against survey information (Kemendagri 2015; BRG
	2019a). Birth rates continue to converge to two births per woman by
	2065. Immigration inflows were assumed as occurring over four years
	from 1975 to 1979 in Kalampangan.
Labour	The labour module assumed that workers transitioned between
	livelihoods while seeking to maximise highest long-term (52 week
	moving average) return to labour. This reflected the attitudes of GMB
	participants who were receptive to changing livelihoods where higher
	incomes were available. Livelihoods were assumed to have no barriers to
	entry where available, however the livelihoods are assumed as being
	physically and culturally constrained in some scenarios. Physical
	constraints include limited fish populations based on natural carrying
	capacity. Cultural constraints include where traditional law prohibits
	certain practices as with the Dayaknese 'local wisdom' regarding
	peatland farming, or where only a limited number of alternative
	livelihoods are available.
	Labour transitioned between livelihoods by an increment with a
	maximum threshold per week. Labour increments are assumed in the base
	case to be no greater than the total labour pool divided by 52, implying

	that the total labour pool more transition between livelihoods even the
	that the total labour pool may transition between livelihoods over the
	period of a year. The assumptions of labour increment size and labour
	allocation response to long-term return to labour averages were not
	derived from specific sources and were the subject of sensitivity testing.
Fishing	Fisher incomes and trends in fish catch were calibrated against village
	surveys (TSF 2019), which indicated that fish catch had halved over the
	prior decade. Actual fish populations were unknown but were selected
	through calibration against incomes and trends in fish catch, which are
	variables dependent on fish populations. Fish populations were modelled
	as a simple stock and flow of births and deaths. Fish populations were
	constrained by the carrying capacity of the ecosystem. Real fish prices
	were assumed as being fixed, with local supply having no influence on
	regional fish prices. There was no affirmation amongst villagers that local
	fish supply influenced regional prices. Local fishers indicated that fish
	catch increased threefold during the dry season as low water levels
	concentrated fish populations (Robb, Nion, Anggreini, Richards, Aziz, et
	al. 2022). Fish catch per unit of effort therefore included this seasonal
	fluctuation, with fish yields peaking during the peak of the dry season and
	reaching a nadir at the peak of the wet season.
Farming	Farming income per hectare of farmland is taken from village level
	surveys (Kemendagri 2015). Average income per farmer from farming is
	assumed to be equivalent to the total farmland income divided by the total
	number of farmers. As farmer density increases, returns to farm labour
	decline where all else is held constant. Income from farming is assumed
	to increase at a rate equivalent to Indonesian GDP growth per capita.
	Farmland demand for every given farmer is initially equivalent to one
	hectare, this being a median farm size per farmer.

Where peatland is fully rewetted, the rate of regeneration is assumed to be
10% per year, which includes an assumed program of intentional
restoration. Where the average peatland water table depth is below zero,
the rate of regeneration is assumed to be 1% per year. These rates of
regeneration were calibrated against observations from Hościło (2009),
where regeneration rates of secondary forest were anticipated to range
between 60 years for rarely disturbed degraded peat swamp and several
centuries for highly degraded peatland.
Average monthly rainfall data from the model was adjusted for ENSO (El
Niño Southern Oscillation) conditions by calibrating against previous
models of the relationship between ENSO and rainfall in Palangkaraya
adopted from Susilo et al. (2013). Average seasonal rainfall was
multiplied by the ENSO index adjusted by a multiplier. As per the
averages in Susilo et al. (2013), El Niño decreased rainfall during the dry
season, and la Nina conditions increased rainfall during the dry season.
Where such conditions prevailed, a multiplier was applied which
increased or decreased the influence of the ENSO index.
ENSO Adjusted Weekly Rainfall = Weekly rainfall x (1 – ENSO
index \times Multiplier _{ENSO})
The multiplier was a constant adjusted as a function of ENSO and
seasonal climatic conditions. There were four separate multipliers, El
Niño dry season, El Niño wet season, la Nina dry season, la Nina wet
season. These multipliers were adjusted so that model rainfall averages
for these subcategories reflected averages presented in Susilo et al. (2013)
within one standard error.

	The ENSO index itself was taken from historical data (NOAA 2020) in
	combination with a simple oscillating function with a period of five years
	and an amplitude of 1.25.
	$ENSO(t) = -1.25 \times \sin(\frac{2\pi (t + 0.25 \times 26)}{52 \times 5})$
Fire risk	Wildfire ignition points are assumed to emerge as a result of (i) peatland
	condition increasing vulnerability to fire and (ii) human population and
	presence increasing ignition point frequency. A wildfire 'ignition point' is
	defined as any fire hotspot that occurs outside of a 2 km radius and 48
	hour duration of any other prior hotspot. This buffer assumption is
	adopted from Vetrita and Haryani (2012) to give an estimate of ignition
	points contained within hotspot datasets. 'Fire risk' is defined as the
	probability of the occurrence of an ignition point within a defined spatial
	area and time period (Bachmann and Allgöwer 2001). Peatland condition
	itself is dependent on land cover, water table depth and seasonal or ENSO
	climatic conditions. Human causes of hotspots include intentional and
	unintentional origins. Unintentionally caused fires, such as through
	haphazard cigarette disposal, are assumed to be proportional to population
	increases. Intentionally lit fires are assumed as occurring due to (i)
	controlled fires for agricultural purposes that become uncontrolled, and
	(ii) uncontrolled fires used for land clearing to prepare land for sale.
	Intentionally lit ignition points are therefore dependent on labour
	allocation to the associated livelihoods and land prices. Actual
	proportional allocations were estimated through calibration against fire
	hotspot data (fig. 3.4).
Peatland condition	Peatland water table averages were assumed to be a combination of

	drainage through canal building, peat subsidence from organic carbon
	mineralisation and seasonal rainfall. Physical peat subsidence through
	initial compaction following drainage and deforestation was not
	considered. Annual water tables were assumed to rise and fall due to
	seasonal increases and decreases in average weekly rainfall. Areas that
	are deforested are assumed to have been drained. Peatland mineralisation
	was assumed to be a function of peatland water table depth. The
	relationship between peatland water table depth and greenhouse gas
	emissions was adopted from Evans et al. (2019), and is defined as the
	following:
	$Subs_m = 0.0431 WTD_m - 1.24 (for WTD_m > 0)$
	$\mathbf{Subs}_{\mathbf{m}} = 0$ (for $WTD_{\mathbf{m}} \le 0$)
	Where 'WTD _m ' is the mean water table depth (in centimetres) and
	'Subs _m ' is the mean annual subsidence rate (in centimetres). Where
	WTD_m was less than or equal to zero centimetres, then the rate of
	subsidence was assumed to be zero.
Greenhouse gas model	Greenhouse gas emissions were measured as a summation of changes to
	above ground biomass (AGB) carbon stocks and peat soil mineralisation,
	which included changes in peat soil carbon content.
	Above ground biomass (AGB) carbon stock estimates were adopted from
	Hościło (2009), who measured plots of different land cover types within 5
	kilometres of the study area. The change in greenhouse gas emissions in a
	given time period (t-1, t) is calculated in the model as:
	$\Delta GHG_{t,t-1} = (C_{AGB} (AGB_t - AGB_{t-1}) + C_{PS} (PS_t - PS_{t-1})) \delta_{CO:eq:C}$
	Where C_{PS} is the carbon content per tonne of peat soil (MgCO ₂ e Mg ⁻¹);

	C_{AGB} is the carbon content of the above ground biomass (ΔAGB is the
	change in above ground biomass and ΔPS is the change in peat soil layer
	due to subsidence . $\delta_{CO^2eq:C}$ is the conversion ratio between organic carbon
	and carbon dioxide equivalent.
	Total changes in above ground biomass and peat soil, whether through
	degradation or accumulation, are calculated as the sum of greenhouse gas
	flux over time.
	Total GHG = $\sum_{1}^{T} C_{AGB} (AGB_t - AGB_{t-1}) \delta_{CO:eq:C} + \sum_{1}^{T} C_{PS} (PS_t - C) = \sum_{1}^{T} C_{PS} (PS_t - C) $
	PS_{t-1}) $\delta_{CO2eq:C}$
	$PS_t = D A_{PS} \beta$
	Carbon content of dry weight AGB is assumed from Hościło (2009) for
	woody biomass and Yulianti (2018) for ferns. The carbon content and
	bulk density of peat soil was assumed as 56% and 0.09 g cm ⁻³ respectively
	as per measurements of peat soil in Central Kalimantan (Hościło 2009).
Biochar yield effect	Biochar was assumed to have a 1.67% increase in saleable harvest yield
	per tonne of biochar applied per hectare. The aggregate amount of biochar
	that was assumed to be applied with each planting was 1 Mg ha ⁻¹ . Biochar
	was further assumed to be applied in concentrated rates at the planting
	holes of both crops at an effective rate of 20% weight to weight on pre-
	rehabilitation cropping and in post-rehabilitation harvestable
	paludiculture and agroforest products.

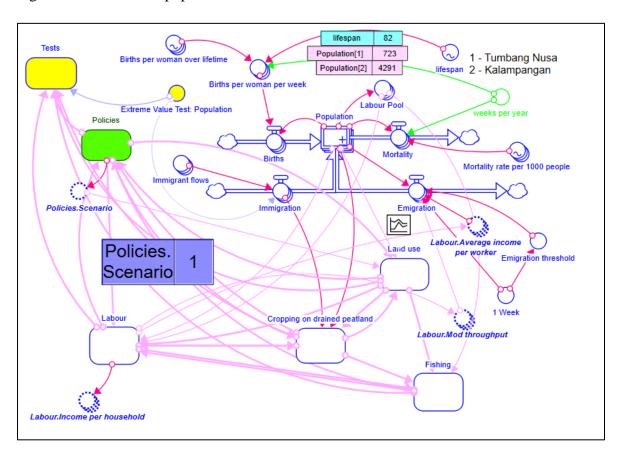


Figure S1: SD model - population module

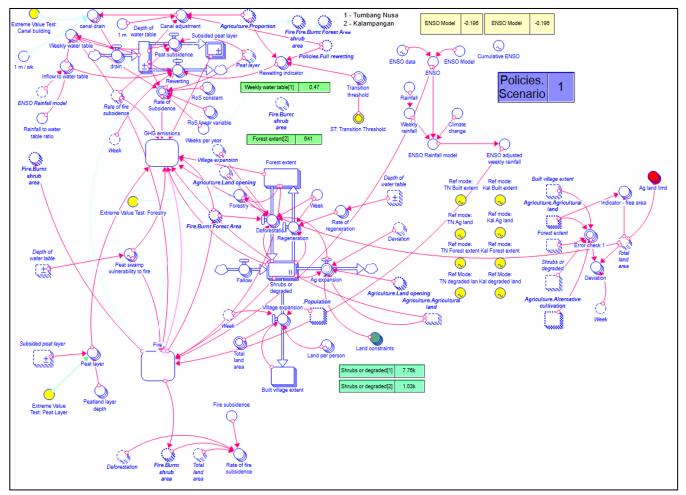
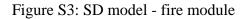
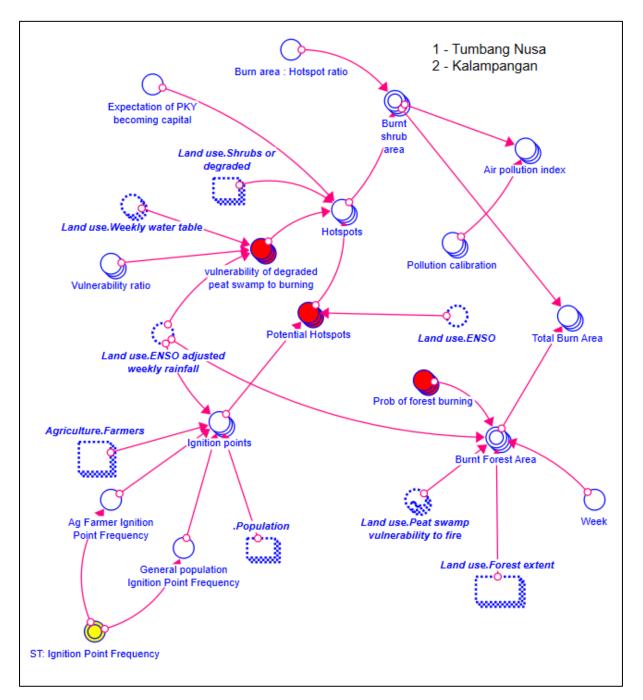
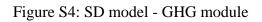





Figure S2: SD model - land use module

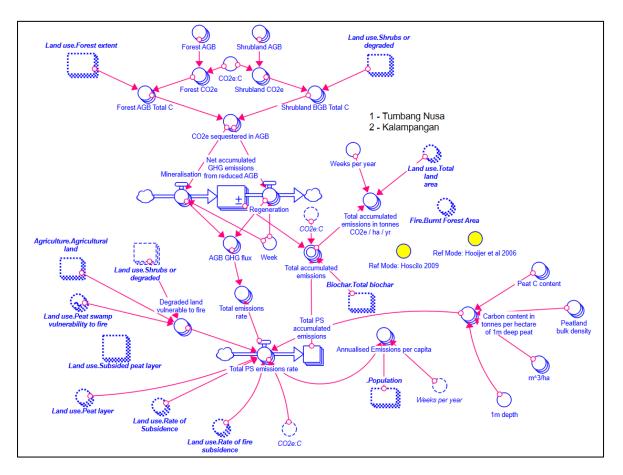
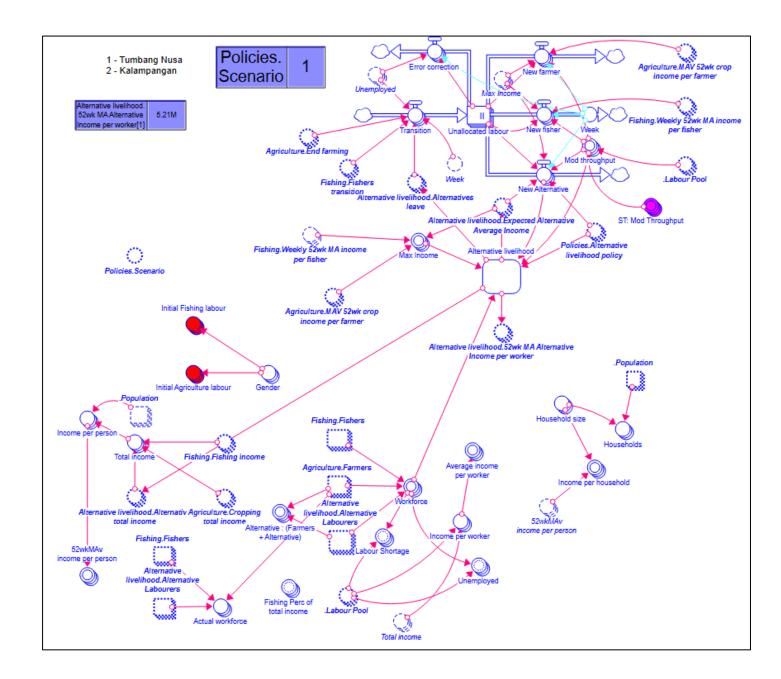



Figure S5: SD model – labour module

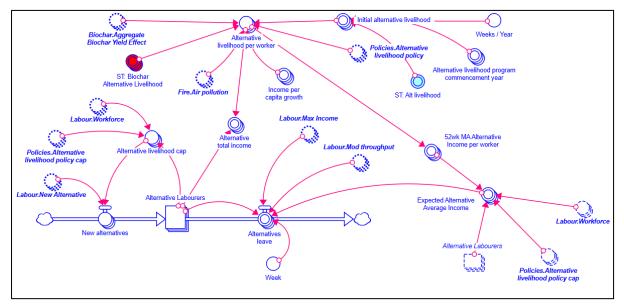
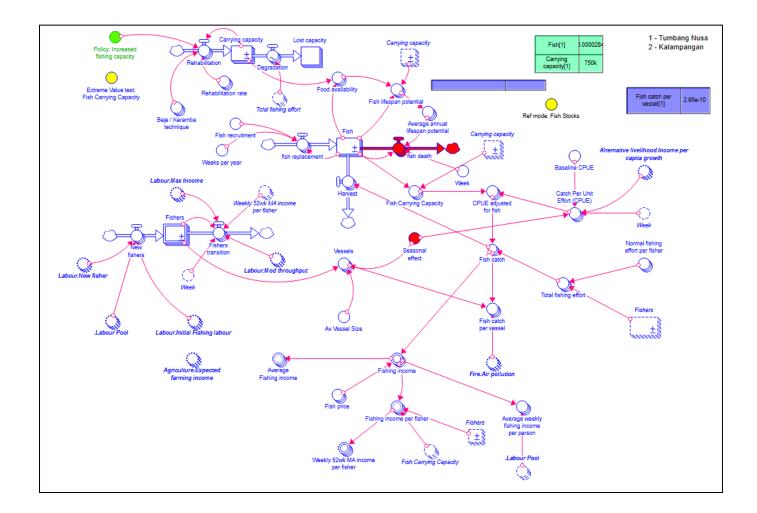



Figure S6: SD model - alternative livelihood module

Figure S7: SD model - fishing module

Figure S8: SD model – cropping on drained peatland module

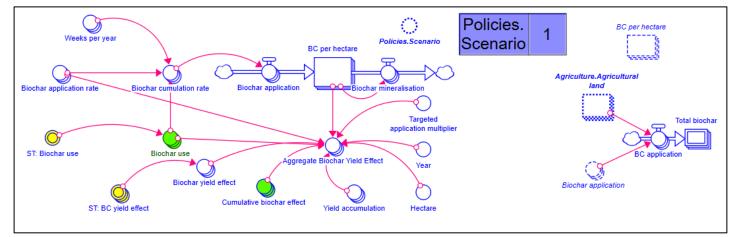


Figure S9: SD model – biochar module

Table S2: Model equations

Top-Level Model:

Population[1](t) = Population[1](t - dt) + (Immigration[1] + Births[1] - Mortality[1] - Emigration[1])* dt INIT Population[1] = Extreme_Value_Test:_Population*500 **UNITS:** People Population[2](t) = Population[2](t - dt) + (Immigration[2] + Births[2] - Mortality[2] - Emigration[2])* dt INIT Population [2] = 0**UNITS:** People 4032, Kalampangan 2015 1027, Tumbang Nusa 2018 Births[1] = Births_per_woman_per_week[1]*0.5*Population {UNIFLOW} UNITS: People/Week Births[2] = Births per woman per week[2]*0.5*Population[2] {UNIFLOW} UNITS: People/Week Emigration[Villages] = IF(Population <= 0) THEN 0 ELSE IF (Labour.Average income per worker < Emigration threshold/Week AND Population > 0) THEN Labour.Mod throughput/Week ELSE 0 {UNIFLOW} UNITS: People/Week Immigration[1] = Immigrant flows[1]*Extreme Value Test: Population/DT {UNIFLOW} **UNITS:** People/Week Immigration[2] = Immigrant flows[2]*Extreme Value Test: Population/DT {UNIFLOW} UNITS: People/Week Mortality[Villages] = IF(Population ≤ 0) THEN 0 ELSE Population/1000*Mortality_rate_per_1000_people/weeks_per_year {UNIFLOW} UNITS: People/Week Births_per_woman_over_lifetime[Villages] = GRAPH(TIME) **UNITS:** People/People Births_per_woman_per_week[Villages] = Births per woman over lifetime/(lifespan*weeks per year) UNITS: People/People/Week Emigration_threshold = 200000*(1+.0315/52)^((TIME-50*52)/Week) UNITS: IDR / Person Extreme_Value_Test:_Population = 0 UNITS: People / People Immigrant flows[1] = 0UNITS: People/Week Immigrant flows[2] = IF(TIME = 15*52) THEN 400 ELSE (IF(TIME = 16*52) THEN 400 ELSE (IF(TIME = 17*52) THEN 400 ELSE (IF(TIME = 18*52) THEN 400 ELSE (IF(TIME = 19*52) THEN 400 ELSE 0)))) UNITS: People/Week Labour_Pool[Villages] = Population*0.8 **UNITS:** People lifespan = GRAPH(TIME)**UNITS: Years** Mortality rate per 1000 people[Villages] = GRAPH(TIME) UNITS: People/People/Year Week = 1UNITS: Week weeks_per_year = 52UNITS: weeks/year

Agriculture:

 $Agricultural_land[Villages](t) = Agricultural_land[Villages](t - dt) + (Land_opening[Villages] +$ Return[Villages] - Land use constraint[Villages] - Transition[Villages]) * dt INIT Agricultural land[Villages] = 0**UNITS:** Hectares Alternative cultivation[Villages](t) = Alternative cultivation[Villages](t - dt) + (Transition[Villages] - Return[Villages]) * dt {NON-NEGATIVE} INIT Alternative_cultivation[Villages] = 0**UNITS:** Hectares $Area_for_harvest[Villages](t) = Area_for_harvest[Villages](t - dt) + (Maturity[Villages] - dt) + (Maturity[Villa$ Inundation mortality[Villages] - Unspoiled[Villages]) * dt INIT Area for harvest[Villages] = 0**UNITS:** Hectares Demand_for_cropping_land[Villages](t) = Demand_for_cropping_land[Villages](t - dt) + (Demand_Accumulation[Villages] - Land_opening[Villages]) * dt INIT Demand for cropping land[Villages] = 0**UNITS:** Hectares Farmers[Villages](t) = Farmers[Villages](t - dt) + (New_Farmers[Villages] - End_farming[Villages]) * dt INIT Farmers[Villages] = 0**UNITS:** People Growing[Villages](t) = Growing[Villages](t - dt) + (Planting[Villages] - Maturity[Villages]) * dt{CONVEYOR} INIT Growing[Villages] = 0TRANSIT TIME = 4*3INFLOW LIMIT = INF CAPACITY = INF CONTINUOUS ACCEPT MULTIPLE BATCHES **UNITS:** Hectares $Post_flood_harvest[Villages](t) = Post_flood_harvest[Villages](t - dt) + (Unspoiled[Villages] - dt) +$ Crop_harvest[Villages]) * dt {NON-NEGATIVE} INIT Post_flood_harvest[Villages] = 0**UNITS:** Hectares Crop harvest[Villages] = IF(Post flood harvest<=0) THEN 0 ELSE Post flood harvest/Week {UNIFLOW} UNITS: Hectares / Week Demand_Accumulation[Villages] = New_Farmers*Land_demand_per_farmer {UNIFLOW} UNITS: Hectares/Week End_farming[Villages] = IF (Farmers <= 0) THEN 0 ELSE IF(Labour.Max_Income > Expected farming income) THEN Farmers/Week MOD (Labour.Mod throughput/Week)*(1+Policies.Full rewetting) ELSE 0 {UNIFLOW} UNITS: People/Week Inundation_mortality[Villages] = IF(Area_for_harvest<=0) THEN 0 ELSE IF(Cropland_flooding=0) THEN Area for harvest/DT ELSE IF(Permanent Inundation mortality<=0) THEN 0 ELSE Area_for_harvest/DT*Permanent_Inundation_mortality {UNIFLOW} UNITS: Hectares / Week Land_opening[Villages] = IF(Land_use.Ag_land_limit<=Agricultural_land) THEN 0 ELSE IF (Land use.Deviation > 1) THEN 0 ELSE (IF(Agricultural land >= Land use.Ag land limit) THEN 0 ELSE((IF(Land_use.Depth_of_water_table< 0.4) THEN 0 ELSE (IF(Land use.Weekly rainfall <= 0) THEN 0 ELSE Demand for cropping land MOD Land_use.Ag_land_limit)) *Land_use."Indicator_-_free_area"/Week)) {UNIFLOW} UNITS: Hectares/Week Land use constraint[Villages] = IF (Land_use.Deviation>2) THEN Land_use.Deviation ELSE IF (

Land_use.Ag_land_limit/Week < Agricultural_land/Week) THEN ABS (Land_use.Ag_land_limit/Week - Agricultural_land/Week) ELSE 0 {UNIFLOW} UNITS: Hectares/Week Maturity[Villages] = CONVEYOR OUTFLOW UNITS: Hectares / Week New Farmers[1] = (Labour.New farmer[1] +IF(TIME=0) THEN Labour.Initial Agriculture labour[1]*.Population[1]/Week ELSE 0) {UNIFLOW} UNITS: People/Week New_Farmers[2] = (Labour.New_farmer[2]+.Immigration[2] + IF(TIME=0) THEN Labour.Initial_Agriculture_labour[2]*.Population[2]/Week ELSE 0) {UNIFLOW} P[anting[Villages] = IF(Area for harvest >= Agricultural land) THEN 0 ELSEAgricultural_land/Week+Crop_harvest {UNIFLOW} UNITS: Hectares / Week Return[Villages] = (IF(Policies.Scenario = 4) THEN 1 ELSE 0)* (IF(Labour."Alternative_:_(Farmers_+_Alternative)" > "Ag_land_:_Ag_land_+_Alt._cult.") THEN (Alternative_cultivation/Week MOD Labour.Mod_throughput/Minimum_Farmer_Density/Week) ELSE 0) {UNIFLOW} **UNITS:** Hectares/Week Transition[Villages] = (IF(Policies.Scenario = 4) THEN 1 ELSE 0)* (IF(Labour."Alternative_:_(Farmers_+_Alternative)" < "Ag_land_:_Ag_land_+_Alt._cult.") THEN (Agricultural land/Week MOD Labour.Mod throughput/Minimum Farmer Density/Week) ELSE 0) {UNIFLOW} UNITS: Hectares/Week Unspoiled[Villages] = Area_for_harvest/Week-Inundation_mortality {UNIFLOW} UNITS: Hectares / Week "Ag_land_:_Ag_land_+_Alt._cult."[Villages] = IF(Agricultural_land+Alternative_cultivation <=0) THEN 0 ELSE Agricultural_land/(Agricultural_land+Alternative_cultivation) UNITS: Hectare / Hectare "1 metre" = 1 **UNITS:** Meter Actual_Farmers_per_hectare[Villages] = IF(Agricultural_land<=0) THEN 0 ELSE Farmers/Agricultural_land UNITS: People/Hectare Baseline_farmer_density = 1/(0.65)UNITS: People / Hectare Crop income per farmer[Villages] = IF(Farmers<=0) THEN 0 ELSE Cropping total income/Farmers UNITS: IDR / People / Week Crop_income_per_hectare[Villages] = Potential_Crop_Income_per_Hectare*(1+Yield_increase*1)* (1+Biochar.Aggregate_Biochar_Yield_Effect*ST:_BC_Ag_)*Year UNITS: IDR/hectare/week Cropland flooding[Villages] = IF(Land use.Depth of water table<0.4) THEN 0 ELSE 1 **UNITS: Hectare/Hectare** Cropping total income[Villages] = Crop harvest*Week*Crop income per hectare* (IF(Fire.Air_pollution_index > 2000) THEN 0.5 ELSE 1) UNITS: IDR/Week Expected_farming_income[Villages] = IF(MAV_52wk_crop_income_per_farmer = 0) THEN Potential_Crop_Income_per_Hectare/Baseline_farmer_density ELSE MAV_52wk_crop_income_per_farmer UNITS: IDR / Person / Week Extreme_Value_Test:_Ag_Land = 1 **UNITS: Indicator Variable** Farmer_density[Villages] = IF(Agricultural_land = 0) THEN 0 ELSE IF(Farmers/Agricultural_land >= Minimum_Farmer_Density) THEN Farmers/Agricultural_land ELSE Minimum_Farmer_Density **UNITS:** People/Hectare

Farmer_Density_52wk_MA[Villages] = MEAN(Farmer_density, DELAY(Farmer density, 1), DELAY(Farmer_density, 2), DELAY(Farmer_density, 3), DELAY(Farmer_density, 4), DELAY(Farmer_density, 5), DELAY(Farmer_density, 6), DELAY(Farmer_density, 7), DELAY(Farmer_density, 8), DELAY(Farmer_density, 9), DELAY(Farmer_density, 10), DELAY(Farmer density, 11), DELAY(Farmer density, 12), DELAY(Farmer density, 13), DELAY(Farmer_density, 14), DELAY(Farmer_density, 15), DELAY(Farmer_density, 16), DELAY(Farmer density, 17), DELAY(Farmer density, 18), DELAY(Farmer density, 19), DELAY(Farmer_density, 20), DELAY(Farmer_density, 21), DELAY(Farmer_density, 22), DELAY(Farmer_density, 23), DELAY(Farmer_density, 24), DELAY(Farmer_density, 25), DELAY(Farmer_density, 26), DELAY(Farmer_density, 27), DELAY(Farmer_density, 28), DELAY(Farmer density, 29), DELAY(Farmer density, 30), DELAY(Farmer density, 31), DELAY(Farmer_density, 32), DELAY(Farmer_density, 33), DELAY(Farmer_density, 34), DELAY(Farmer density, 35), DELAY(Farmer density, 36), DELAY(Farmer density, 37), DELAY(Farmer_density, 38), DELAY(Farmer_density, 39), DELAY(Farmer_density, 40), DELAY(Farmer density, 41), DELAY(Farmer density, 42), DELAY(Farmer density, 43), DELAY(Farmer_density, 44), DELAY(Farmer_density, 45), DELAY(Farmer_density, 46), DELAY(Farmer_density, 47), DELAY(Farmer_density, 48), DELAY(Farmer_density, 49), DELAY(Farmer_density, 50), DELAY(Farmer_density, 51)) UNITS: People/Hectare

Land_demand_per_farmer = 2

MAV 52wk crop income per farmer[Villages] = MEAN(Crop income per farmer, DELAY(Crop_income_per_farmer, 1), DELAY(Crop_income_per_farmer, 2), DELAY(Crop_income_per_farmer, 3), DELAY(Crop_income_per_farmer, 4), DELAY(Crop_income_per_farmer, 5), DELAY(Crop_income_per_farmer, 6), DELAY(Crop_income_per_farmer, 7), DELAY(Crop_income_per_farmer, 8), DELAY(Crop_income_per_farmer, 9), DELAY(Crop_income_per_farmer, 10), DELAY(Crop income per farmer, 11), DELAY(Crop income per farmer, 12), DELAY(Crop income per farmer, 13), DELAY(Crop income per farmer, 14), DELAY(Crop_income_per_farmer, 15), DELAY(Crop_income_per_farmer, 16), DELAY(Crop_income_per_farmer, 17), DELAY(Crop_income_per_farmer, 18), DELAY(Crop_income_per_farmer, 19), DELAY(Crop_income_per_farmer, 20), DELAY(Crop_income_per_farmer, 21), DELAY(Crop_income_per_farmer, 22), DELAY(Crop_income_per_farmer, 23), DELAY(Crop_income_per_farmer, 24), DELAY(Crop income per farmer, 25), DELAY(Crop income per farmer, 26), DELAY(Crop income per farmer, 27), DELAY(Crop income per farmer, 28), DELAY(Crop income per farmer, 29), DELAY(Crop income per farmer, 30), DELAY(Crop_income_per_farmer, 31), DELAY(Crop_income_per_farmer, 32), DELAY(Crop_income_per_farmer, 33), DELAY(Crop_income_per_farmer, 34), DELAY(Crop_income_per_farmer, 35), DELAY(Crop_income_per_farmer, 36), DELAY(Crop income per farmer, 37), DELAY(Crop income per farmer, 38), DELAY(Crop_income_per_farmer, 39), DELAY(Crop_income_per_farmer, 40), DELAY(Crop income per farmer, 41), DELAY(Crop income per farmer, 42), DELAY(Crop_income_per_farmer, 43), DELAY(Crop_income_per_farmer, 44), DELAY(Crop income per farmer, 45), DELAY(Crop income per farmer, 46), DELAY(Crop_income_per_farmer, 47), DELAY(Crop_income_per_farmer, 48), DELAY(Crop_income_per_farmer, 49), DELAY(Crop_income_per_farmer, 50), DELAY(Crop_income_per_farmer, 51)) UNITS: IDR / Person / Week Minimum_Farmer_Density[Villages] = 1.0315^(-TIME/52/Week) UNITS: People / Hectare

Permanent_Inundation_mortality[Villages] = IF(Policies.Permanent_flooding = 0) THEN 0 ELSE (IF(Land_use.Subsided_peat_layer >= 1.5 AND Land_use.Subsided_peat_layer<= 5.5) THEN (Land_use.Subsided_peat_layer-1.5)/4/"1_metre" ELSE (IF (Land_use.Subsided_peat_layer < 5.5)

UNITS: Hectare / People

THEN 0 ELSE 1)) UNITS: Metre / Metre Potential_Crop_Income_per_Hectare = $10^{6*1.5}$ UNITS: IDR/Hectare/Week Proportion[Villages] = IF (.Population <= 0) THEN 0 ELSE Farmers/.Population UNITS: People / People ST: BC Ag = 1*1UNITS: IDR / IDR Week[Villages] = 1UNITS: Week Year = 1**UNITS: Year** Yield increase = GRAPH(TIME)**UNITS:** Tonne/Tonne Fishing: $Carrying_capacity[1](t) = Carrying_capacity[1](t - dt) + (Rehabilitation[1] - Degradation[1]) * dt$ INIT Carrying_capacity[1] = .75*10^6*Extreme_Value_test:_Fish_Carrying_Capacity **UNITS:** Fish $Carrying_capacity[2](t) = Carrying_capacity[2](t - dt) + (Rehabilitation[2] - Degradation[2]) * dt$ INIT Carrying capacity $[2] = 1*10^{4}$ *Extreme Value test: Fish Carrying Capacity **UNITS:** Fish Fish[1](t) = Fish[1](t - dt) + (fish replacement[1] - fish death[1] - Harvest[1]) * dtINIT Fish[1] = INIT(Carrying_capacity[1]) **UNITS:** Fish $Fish[2](t) = Fish[2](t - dt) + (fish_replacement[2] - fish_death[2] - Harvest[2]) * dt$ INIT Fish[2] = INIT(Carrying_capacity[2]) **UNITS:** Fish Fishers[1](t) = Fishers[1](t - dt) + (New fishers[1] - Fishers transition[1]) * dtINIT Fishers[1] = .Labour Pool[1]*0.4 **UNITS:** People $Fishers[2](t) = Fishers[2](t - dt) + (New_fishers[2] - Fishers_transition[2]) * dt$ INIT Fishers[2] = 0**UNITS:** People Lost_capacity[Villages](t) = Lost_capacity[Villages](t - dt) + (Degradation[Villages]) * dt {NON-NEGATIVE} INIT Lost capacity[Villages] = 0**UNITS:** Fish Degradation[Villages] = GRAPH(Total_fishing_effort) Points: (0.000, 20.00), (1.000, 0.00) {UNIFLOW, GF EXTRAPOLATED} UNITS: Fish/Week fish death[Villages] = IF(Average annual lifespan potential <= 0) THEN Fish/Week ELSE 1/(Average annual lifespan potential)*(Fish) {UNIFLOW} UNITS: Fish/Week fish_replacement[Villages] = Fish_recruitment*Fish/Weeks_per_year {UNIFLOW} UNITS: Fish/Week Fishers_transition[1] = IF (Fishers <=0) THEN 0 ELSE (IF(Weekly_52wk_MA_income_per_fisher[1] < Labour.Max_Income[1]) THEN Fishers/Week MOD Labour.Mod_throughput[1]/Week ELSE 0) {UNIFLOW} **UNITS:** People/Week Fishers_transition[2] = IF (Fishers <= 0) THEN 0 ELSE (IF(Weekly 52wk MA income per fisher[2] < Labour.Max Income[2]) THEN Fishers/Week MOD Labour.Mod_throughput[2]/Week ELSE 0) {UNIFLOW} UNITS: People/Week Harvest[Villages] = Fish_catch {UNIFLOW}

UNITS: Fish/Week

New_fishers[Villages] = Labour.New_fisher+ IF(TIME=1) THEN

INIT(.Labour_Pool)/DT*Labour.Initial_Fishing_labour ELSE 0 {UNIFLOW} UNITS: People/Week

Rehabilitation[Villages] = IF(Carrying_capacity < INIT(Carrying_capacity)) THEN

(Rehabilitation_rate*Carrying_capacity+"Beje_/_Keramba_technique")/DT ELSE 0 +(IF (TIME > (2020-1965)*52) THEN PULSE(

Policy:_Increased_fishing_capacity*0.10*INIT(Carrying_capacity),55*52, 52*5) ELSE 0) {UNIFLOW}

UNITS: Fish/Week

 $Av_Vessel_Size = 10$

UNITS: People/Vessel

Average_annual_lifespan_potential[1] = MEAN(Fish_lifespan_potential[1], DELAY(Fish_lifespan_potential[1],1), DELAY(Fish_lifespan_potential[1],2), DELAY(Fish_lifespan_potential[1],3), DELAY(Fish_lifespan_potential[1],4), DELAY(Fish_lifespan_potential[1],5), DELAY(Fish_lifespan_potential[1],6), DELAY(Fish_lifespan_potential[1],7), DELAY(Fish_lifespan_potential[1],8), DELAY(Fish_lifespan_potential[1],9), DELAY(Fish_lifespan_potential[1],10), DELAY(Fish_lifespan_potential[1],11), DELAY(Fish_lifespan_potential[1],12), DELAY(Fish_lifespan_potential[1],13), DELAY(Fish_lifespan_potential[1],14), DELAY(Fish_lifespan_potential[1],15), DELAY(Fish_lifespan_potential[1],16), DELAY(Fish_lifespan_potential[1],17), DELAY(Fish_lifespan_potential[1],18), DELAY(Fish lifespan potential[1],19), DELAY(Fish lifespan potential[1],20), DELAY(Fish_lifespan_potential[1],21), DELAY(Fish_lifespan_potential[1],22), DELAY(Fish_lifespan_potential[1],23), DELAY(Fish_lifespan_potential[1],24), DELAY(Fish_lifespan_potential[1],25), DELAY(Fish_lifespan_potential[1],26), DELAY(Fish_lifespan_potential[1],27), DELAY(Fish_lifespan_potential[1],28), DELAY(Fish_lifespan_potential[1],29), DELAY(Fish_lifespan_potential[1],30), DELAY(Fish lifespan potential[1],31), DELAY(Fish lifespan potential[1],32), DELAY(Fish lifespan potential[1],33), DELAY(Fish lifespan potential[1],34), DELAY(Fish_lifespan_potential[1],35), DELAY(Fish_lifespan_potential[1],36), DELAY(Fish_lifespan_potential[1],37), DELAY(Fish_lifespan_potential[1],38), DELAY(Fish_lifespan_potential[1],39), DELAY(Fish_lifespan_potential[1],40), DELAY(Fish_lifespan_potential[1],41), DELAY(Fish_lifespan_potential[1],42), DELAY(Fish_lifespan_potential[1],43), DELAY(Fish_lifespan_potential[1],44), DELAY(Fish lifespan potential[1],45), DELAY(Fish lifespan potential[1],46), DELAY(Fish lifespan potential[1],47), DELAY(Fish lifespan potential[1],48), DELAY(Fish lifespan potential[1],49), DELAY(Fish lifespan potential[1],50), DELAY(Fish_lifespan_potential[1],51), DELAY(Fish_lifespan_potential[1],52)) **UNITS:** Weeks Average_annual_lifespan_potential[2] = MEAN(Fish_lifespan_potential[2], DELAY(Fish lifespan potential[2],1), DELAY(Fish lifespan potential[2],2), DELAY(Fish_lifespan_potential[2],3), DELAY(Fish_lifespan_potential[2],4), DELAY(Fish lifespan potential[2],5), DELAY(Fish lifespan potential[2],6), DELAY(Fish_lifespan_potential[2],7), DELAY(Fish_lifespan_potential[2],8), DELAY(Fish lifespan potential[2],9), DELAY(Fish lifespan potential[2],10), DELAY(Fish_lifespan_potential[2],11), DELAY(Fish_lifespan_potential[2],12), DELAY(Fish_lifespan_potential[2],13), DELAY(Fish_lifespan_potential[2],14), DELAY(Fish_lifespan_potential[2],15), DELAY(Fish_lifespan_potential[2],16), DELAY(Fish lifespan potential[2],17), DELAY(Fish lifespan potential[2],18), DELAY(Fish_lifespan_potential[2],19), DELAY(Fish_lifespan_potential[2],20), DELAY(Fish lifespan potential[2],21), DELAY(Fish lifespan potential[2],22), DELAY(Fish_lifespan_potential[2],23), DELAY(Fish_lifespan_potential[2],24), DELAY(Fish lifespan potential[2],25), DELAY(Fish lifespan potential[2],26), DELAY(Fish_lifespan_potential[2],27), DELAY(Fish_lifespan_potential[2],28),

DELAY(Fish_lifespan_potential[2],29), DELAY(Fish_lifespan_potential[2],30), DELAY(Fish_lifespan_potential[2],31), DELAY(Fish_lifespan_potential[2],32), DELAY(Fish_lifespan_potential[2],33), DELAY(Fish_lifespan_potential[2],34), DELAY(Fish lifespan potential[2],35), DELAY(Fish lifespan potential[2],36), DELAY(Fish lifespan potential[2],37), DELAY(Fish lifespan potential[2],38), DELAY(Fish_lifespan_potential[2],39), DELAY(Fish_lifespan_potential[2],40), DELAY(Fish lifespan potential[2],41), DELAY(Fish lifespan potential[2],42), DELAY(Fish_lifespan_potential[2],43), DELAY(Fish_lifespan_potential[2],44), DELAY(Fish_lifespan_potential[2],45), DELAY(Fish_lifespan_potential[2],46), DELAY(Fish_lifespan_potential[2],47), DELAY(Fish_lifespan_potential[2],48), DELAY(Fish lifespan potential[2],49), DELAY(Fish lifespan potential[2],50), DELAY(Fish lifespan potential[2],51), DELAY(Fish lifespan potential[2],52)) **UNITS:** Weeks Average_Fishing_income[Villages] = MEAN(Fishing_income, DELAY(Fishing_income,1), DELAY(Fishing income,2), DELAY(Fishing income,3), DELAY(Fishing income,4), DELAY(Fishing_income,5), DELAY(Fishing_income,6), DELAY(Fishing_income,7), DELAY(Fishing income,8), DELAY(Fishing income,9), DELAY(Fishing income,10), DELAY(Fishing_income,11), DELAY(Fishing_income,12), DELAY(Fishing_income,13), DELAY(Fishing_income,14), DELAY(Fishing_income,15), DELAY(Fishing_income,16), DELAY(Fishing_income, 17), DELAY(Fishing_income, 18), DELAY(Fishing_income, 19), DELAY(Fishing_income,20), DELAY(Fishing_income,21), DELAY(Fishing_income,22), DELAY(Fishing_income,23), DELAY(Fishing_income,24), DELAY(Fishing_income,25), DELAY(Fishing income.26), DELAY(Fishing income.27), DELAY(Fishing income.28), DELAY(Fishing_income,29), DELAY(Fishing_income,30), DELAY(Fishing_income,31), DELAY(Fishing_income, 32), DELAY(Fishing_income, 33), DELAY(Fishing_income, 34), DELAY(Fishing_income,35), DELAY(Fishing_income,36), DELAY(Fishing_income,37), DELAY(Fishing_income,38), DELAY(Fishing_income,39), DELAY(Fishing_income,40), DELAY(Fishing_income,41), DELAY(Fishing_income,42), DELAY(Fishing_income,43), DELAY(Fishing income,44), DELAY(Fishing income,45), DELAY(Fishing income,46), DELAY(Fishing income,47), DELAY(Fishing income,48), DELAY(Fishing income,49), DELAY(Fishing_income,50), DELAY(Fishing_income,51), DELAY(Fishing_income,52)) UNITS: IDR/Week Average_weekly_fishing_income_per_person[Villages] = IF(.Labour_Pool <=0) THEN 0 ELSE Fishing_income/.Labour_Pool UNITS: IDR/Person/Week Baseline CPUE = 7**UNITS:** Fish/Effort "Beje / Keramba technique"[Villages] = 0**UNITS:** Fish "Catch_Per_Unit_Effort_(CPUE)"[Villages] = Baseline_CPUE* (1+Alternative_livelihood.Income_per_capita_growth/52/2)^(IF(TIME>52*30) THEN (TIME-52*30)/Week ELSE 0) *Seasonal effect **UNITS:** Fish/Effort CPUE adjusted for fish[Villages] = "Catch Per Unit Effort (CPUE)"*Fish:Carrying Capacity **UNITS:** Fish/Effort Extreme Value test: Fish Carrying Capacity = 1UNITS: Fish Fish_catch[Villages] = Total_fishing_effort*CPUE_adjusted_for_fish UNITS: Fish/Week Fish_catch_per_vessel[Villages] = (IF(Fire.Air_pollution_index > 2000) THEN 1-0.25 ELSE IF(Fire.Air_pollution_index > 1000) THEN 1-0.1 ELSE 1)* IF(Vessels ≤ 0.1) THEN 0 ELSE (Fish catch/Vessels /52) UNITS: Fish/Vessel/Week Fish lifespan potential[1] = IF (Fish>Carrying capacity[1]) THEN (3*52){weeks}*(Food_availability[1])) ELSE 3*52{weeks}

UNITS: Weeks Fish_lifespan_potential[2] = IF (Fish>Carrying_capacity[2]) THEN (3*52*(Food_availability[2])) ELSE 3*52 **UNITS:** Weeks Fish price[Villages] = 100000**UNITS: IDR/Fish** Fish recruitment = 1.75/2UNITS: Fish / Fish / Year Fish:Carrying_Capacity[Villages] = (Fish)/(IF(Carrying_capacity = 0) THEN 0.000000001 ELSE Carrying capacity) UNITS: Fish / Fish Fishing income[Villages] = Fish price*Fish catch **UNITS: IDR/Weeks** Fishing_income_per_fisher[Villages] = IF(Fishers>0) THEN Fishing_income/(Fishers) ELSE IF (Fish:Carrying Capacity >1.5) THEN 1.5*10^6 ELSE 0 UNITS: IDR/People/Week $Food_availability[1] = IF(Fish[1]) Carrying_capacity[1]) THEN Carrying_capacity[1]/(Fish[1])$ ELSE 1 UNITS: Fish / Fish Food_availability[2] = IF(Fish[2]>Carrying_capacity[2]) THEN Carrying_capacity[2]/Fish[2] ELSE 1 UNITS: Fish / Fish Normal fishing effort per fisher[Villages] = 1 UNITS: Effort / Person / Week Policy:_Increased_fishing_capacity = 0 UNITS: Fish / Fish Ref_mode:_Fish_Stocks = 0 **UNITS:** Fish Rehabilitation rate[Villages] = 1/52UNITS: Fish / Fish Seasonal effect = SIN((TIME+0.25*26)*PI/26)+1UNITS: Fish / Fish Total_fishing_effort[Villages] = Normal_fishing_effort_per_fisher*Fishers UNITS: Effort/Week Vessels[Villages] = Fishers/Av_Vessel_Size*(Seasonal_effect/2*0.75+0.25) **UNITS: Vessel** Week = 1**UNITS: Week** Weekly_52wk_MA_income_per_fisher[Villages] = MEAN(Fishing_income_per_fisher, DELAY(Fishing_income_per_fisher,1), DELAY(Fishing_income_per_fisher,2), DELAY(Fishing_income_per_fisher,3), DELAY(Fishing_income_per_fisher,4), DELAY(Fishing income per fisher,5), DELAY(Fishing income per fisher,6), DELAY(Fishing income per fisher,7), DELAY(Fishing income per fisher,8), DELAY(Fishing income per fisher,9), DELAY(Fishing income per fisher,10), DELAY(Fishing_income_per_fisher,11), DELAY(Fishing_income_per_fisher,12), DELAY(Fishing income per fisher,13), DELAY(Fishing income per fisher,14), DELAY(Fishing_income_per_fisher,15), DELAY(Fishing_income_per_fisher,16), DELAY(Fishing_income_per_fisher,17), DELAY(Fishing_income_per_fisher,18), DELAY(Fishing_income_per_fisher,19), DELAY(Fishing_income_per_fisher,20), DELAY(Fishing_income_per_fisher,21), DELAY(Fishing_income_per_fisher,22), DELAY(Fishing_income_per_fisher,23), DELAY(Fishing_income_per_fisher,24), DELAY(Fishing income per fisher, 25), DELAY(Fishing income per fisher, 26), DELAY(Fishing_income_per_fisher,27), DELAY(Fishing_income_per_fisher,28), DELAY(Fishing income per fisher, 29), DELAY(Fishing income per fisher, 30), DELAY(Fishing_income_per_fisher,31), DELAY(Fishing_income_per_fisher,32),

DELAY(Fishing_income_per_fisher,33), DELAY(Fishing_income_per_fisher,34), DELAY(Fishing_income_per_fisher,35), DELAY(Fishing_income_per_fisher,36), DELAY(Fishing_income_per_fisher,37), DELAY(Fishing_income_per_fisher,38), DELAY(Fishing_income_per_fisher,39), DELAY(Fishing_income_per_fisher,40), DELAY(Fishing income per fisher,41), DELAY(Fishing income per fisher,42), DELAY(Fishing_income_per_fisher,43), DELAY(Fishing_income_per_fisher,44), DELAY(Fishing income per fisher, 45), DELAY(Fishing income per fisher, 46), DELAY(Fishing_income_per_fisher,47), DELAY(Fishing_income_per_fisher,48), DELAY(Fishing_income_per_fisher,49), DELAY(Fishing_income_per_fisher,50), DELAY(Fishing_income_per_fisher,51), DELAY(Fishing_income_per_fisher,52)) UNITS: IDR/People/Week Weeks_per_year = 52UNITS: Weeks / Year Labour: $Unallocated_labour[Villages](t) = Unallocated_labour[Villages](t - dt) + (Transition[Villages] - Unallocated_labour[Villages](t) = Unallocat$ New farmer[Villages] - New fisher[Villages] - New Alternative[Villages] -Error_correction[Villages]) * dt {NON-NEGATIVE} INIT Unallocated_labour[Villages] = 0 **UNITS:** People Error_correction[Villages] = IF(Unallocated_labour>Unemployed) THEN (Unallocated_labour-Unemployed)/Week ELSE 0 {UNIFLOW} **OUTFLOW PRIORITY: 4** UNITS: People/Week New_Alternative[Villages] = Policies.Alternative_livelihood_policy* IF(Alternative_livelihood.Expected_Alternative_Average_Income>= Max_Income) THEN (Unallocated_labour MOD Mod_throughput*12)/Week ELSE 0 {UNIFLOW} **OUTFLOW PRIORITY: 3** UNITS: People/Week New farmer[Villages] = IF(Max Income <= Agriculture.MAV 52wk crop income per farmer) THEN (Unallocated_labour MOD Mod_throughput)/Week ELSE 0 {UNIFLOW} **OUTFLOW PRIORITY: 1 UNITS:** People/Week New_fisher[Villages] = IF(Max_Income <= Fishing.Weekly_52wk_MA_income_per_fisher) THEN Unallocated_labour/Week MOD Mod_throughput/Week ELSE 0 {UNIFLOW} **OUTFLOW PRIORITY: 2 UNITS:** People/Week Transition[Villages] = IF(TIME > 1) THEN (Fishing.Fishers_transition+Alternative_livelihood.Alternatives_leave+Agriculture.End farming) + Unemployed/Week ELSE 0 {UNIFLOW} UNITS: People/Week "52wkMAv_income_per_person"[Villages] = MEAN(Income_per_person, DELAY(Income_per_person ,1), DELAY(Income_per_person ,2), DELAY(Income_per_person ,3), DELAY(Income_per_person ,4), DELAY(Income_per_person ,5), DELAY(Income_per_person ,6), DELAY(Income_per_person ,7), DELAY(Income_per_person ,8), DELAY(Income_per_person ,9), DELAY(Income_per_person ,10), DELAY(Income_per_person ,11), DELAY(Income_per_person ,12), DELAY(Income_per_person ,13), DELAY(Income_per_person ,14), DELAY(Income_per_person ,15), DELAY(Income_per_person ,16), DELAY(Income_per_person ,17), DELAY(Income_per_person ,18), DELAY(Income_per_person ,19), DELAY(Income_per_person ,20), DELAY(Income_per_person ,21), DELAY(Income_per_person ,22), DELAY(Income_per_person ,23), DELAY(Income_per_person ,24), DELAY(Income_per_person ,25), DELAY(Income_per_person ,26), DELAY(Income_per_person ,27), DELAY(Income_per_person ,28), DELAY(Income_per_person ,29), DELAY(Income_per_person ,30), DELAY(Income_per_person ,31), DELAY(Income_per_person ,32), DELAY(Income_per_person ,33), DELAY(Income_per_person ,34), DELAY(Income_per_person ,35),

DELAY(Income_per_person ,36), DELAY(Income_per_person ,37), DELAY(Income_per_person ,38), DELAY(Income_per_person ,39), DELAY(Income_per_person ,40),

DELAY(Income_per_person ,41), DELAY(Income_per_person ,42), DELAY(Income_per_person ,43), DELAY(Income_per_person ,44), DELAY(Income_per_person ,45),

- DELAY(Income_per_person ,46), DELAY(Income_per_person ,47), DELAY(Income_per_person
- ,48), DELAY(Income_per_person ,49), DELAY(Income_per_person ,50),
- DELAY(Income_per_person ,51))

UNITS: IDR / Person / Week

- Actual_workforce[Villages] =
- Agriculture.Farmers+Alternative_livelihood.Alternative_Labourers+Fishing.Fishers

UNITS: People

- "Alternative_:_(Farmers_+_Alternative)"[Villages] =
- IF(Agriculture.Farmers+Alternative_livelihood.Alternative_Labourers<=0) THEN 0 ELSE (

Agriculture.Farmers/(Agriculture.Farmers+Alternative_livelihood.Alternative_Labourers)) UNITS: People / People

- Average_income_per_worker[Villages] = MEAN(Income_per_worker,
- DELAY(Income_per_worker ,1), DELAY(Income_per_worker ,2), DELAY(Income_per_worker
- ,3), DELAY(Income_per_worker ,4), DELAY(Income_per_worker ,5),
- DELAY(Income_per_worker ,6), DELAY(Income_per_worker ,7), DELAY(Income_per_worker
- ,8), DELAY(Income_per_worker ,9), DELAY(Income_per_worker ,10),
- DELAY(Income_per_worker ,11), DELAY(Income_per_worker ,12),
- DELAY(Income_per_worker ,13), DELAY(Income_per_worker ,14), DELAY(Income_per_worker
- ,15), DELAY(Income_per_worker ,16), DELAY(Income_per_worker ,17),
- DELAY(Income_per_worker ,18), DELAY(Income_per_worker ,19),
- DELAY(Income_per_worker ,20), DELAY(Income_per_worker ,21),
- DELAY(Income_per_worker ,22), DELAY(Income_per_worker ,23),
- DELAY(Income_per_worker ,24), DELAY(Income_per_worker ,25),
- DELAY(Income_per_worker ,26), DELAY(Income_per_worker ,27), DELAY(Income_per_worker
- ,28), DELAY(Income_per_worker ,29), DELAY(Income_per_worker ,30),
- DELAY(Income_per_worker ,31), DELAY(Income_per_worker ,32),
- DELAY(Income_per_worker ,33), DELAY(Income_per_worker ,34),
- DELAY(Income_per_worker ,35), DELAY(Income_per_worker ,36),
- DELAY(Income_per_worker ,37), DELAY(Income_per_worker ,38), DELAY(Income_per_worker
- ,39), DELAY(Income_per_worker ,40), DELAY(Income_per_worker ,41),
- DELAY(Income_per_worker ,42), DELAY(Income_per_worker ,43),
- DELAY(Income_per_worker ,44), DELAY(Income_per_worker ,45),
- DELAY(Income_per_worker ,46), DELAY(Income_per_worker ,47),
- DELAY(Income_per_worker ,48), DELAY(Income_per_worker ,49),
- DELAY(Income_per_worker ,50), DELAY(Income_per_worker ,51))

UNITS: IDR / Person / Week

- Fishing_Perc_of_total_income[1] = 0.9
- UNITS: IDR / IDR
- Fishing_Perc_of_total_income[2] = 0.1
- UNITS: IDR / IDR
- Gender[Villages] = 1
- UNITS: People/People
- $Household_size[Villages] = 4$
- UNITS: People/Household
- Households[Villages] = .Population/Household_size
- UNITS: Household
- Income_per_household[Villages] = "52wkMAv_income_per_person"*Household_size UNITS: IDR / Household / Week
- Income_per_person[Villages] = IF(.Population<=0) THEN 0 ELSE Total_income/.Population UNITS: IDR / Person / Week

Income_per_worker[Villages] = IF (.Labour_Pool <= 0) THEN 0 ELSE Total_income/.Labour_Pool UNITS: IDR / Person / Week Initial_Agriculture_labour[1] = 0.1*Gender **UNITS:** People/People Initial Agriculture labour [2] = 0.9*Gender **UNITS:** People/People Initial Fishing labour [1] = 0.8*Gender UNITS: People / People Initial_Fishing_labour[2] = 0.1*Gender UNITS: People / People Labour Shortage[Villages] = IF(Workforce>=.Labour Pool) THEN Workforce-.Labour Pool ELSE 0 **UNITS:** People Max_Income[Villages] = MAX(MAX(Agriculture.MAV_52wk_crop_income_per_farmer, Fishing.Weekly 52wk MA income per fisher), MAX(Alternative_livelihood.Expected_Alternative_Average_Income, Agriculture.MAV_52wk_crop_income_per_farmer)) UNITS: IDR / People / Week Mod_throughput[1] = ST:_Mod_Throughput* IF(.Labour_Pool[1]<100) THEN 10 ELSE .Labour_Pool[1]/520 **UNITS:** People Mod_throughput[2] = ST:_Mod_Throughput *IF(.Labour_Pool[2]<100) THEN 30 ELSE .Labour Pool[2]/520 **UNITS:** People ST:_Mod_Throughput[Villages] = 1*1 UNITS: People / People Total_income[Villages] = Agriculture.Cropping_total_income+ Fishing.Fishing_income+ Alternative livelihood.Alternative total income UNITS: IDR/Week Unemployed[Villages] = IF(.Labour Pool>Workforce) THEN ABS(.Labour Pool-Workforce) ELSE 0 **UNITS:** People Week = 1**UNITS:** Week Workforce[1] =Fishing.Fishers[1]+Agriculture.Farmers[1]+Alternative livelihood.Alternative Labourers[1] **UNITS:** People Workforce[2] =Fishing.Fishers[2]+Agriculture.Farmers[2]+Alternative_livelihood.Alternative_Labourers[2] **UNITS:** People Land use: Built village extent[1](t) = Built village extent[1](t - dt) + (Village expansion[1]) * dt {NON-NEGATIVE} INIT Built village extent[1] = INIT(.Population)*Land per person **UNITS:** Hectares $Built_village_extent[2](t) = Built_village_extent[2](t - dt) + (Village_expansion[2]) * dt {NON-$ NEGATIVE} INIT Built_village_extent[2] = 0**UNITS: Hectares** $Depth_of_water_table[Villages](t) = Depth_of_water_table[Villages](t - dt) + (drain[Villages] - dt) + (drain[Villages]$ Peat subsidence[Villages] - Rewetting[Villages]) * dt INIT Depth_of_water_table[Villages] = 0 **UNITS:** Meter

Forest_extent[Villages](t) = Forest_extent[Villages](t - dt) + (Regeneration[Villages] -

Deforestation[Villages]) * dt {NON-NEGATIVE} INIT Forest_extent[Villages] = Total_land_area-INIT(Built_village_extent) **UNITS: Hectares** Shrubs or degraded[Villages](t) = Shrubs or degraded[Villages](t - dt) + (Deforestation[Villages] + Fallow[Villages] - Regeneration[Villages] - Ag expansion[Villages] - Village expansion[Villages]) * dt {NON-NEGATIVE} INIT Shrubs or degraded[Villages] = 0**UNITS: Hectares** Subsided_peat_layer[Villages](t) = Subsided_peat_layer[Villages](t - dt) + (Peat_subsidence[Villages]) * dt INIT Subsided_peat_layer[Villages] = 0**UNITS: Meter** Ag expansion[Villages] = IF (Deviation > 0 OR Agriculture.Agricultural land < Land constraints AND Shrubs_or_degraded > 0) THEN Agriculture.Land_opening+Deviation ELSE 0 {UNIFLOW} **OUTFLOW PRIORITY: 2** UNITS: Hectares/Week Deforestation[Villages] = IF(Shrubs_or_degraded<=0 OR Ag_expansion>0) THEN Ag_expansion +Village_expansion+Fire.Burnt_Forest_Area+ (Forestry)/Week ELSE Fire.Burnt_Forest_Area+(Forestry)/Week +Agriculture.Land_opening {UNIFLOW} UNITS: Hectares/Week drain[Villages] = (canal drain-DELAY(canal drain, DT)) {UNIFLOW} UNITS: Meters/Week Fallow[Villages] = 0 {UNIFLOW} UNITS: Hectares/Week Peat_subsidence[1] = IF (Peat_layer[1] <=0) THEN 0 ELSE (IF(Weekly_water_table[1]>0) THEN (Rate_of_Subsidence[1]+Rate_of_fire_subsidence[1]) ELSE 0) {UNIFLOW} UNITS: Meters/Week Peat_subsidence[2] = IF (Peat_layer[2] <= 0) THEN 0 ELSE (IF(Weekly_water_table[2]>0) THEN (Rate of Subsidence[2]+Rate of fire subsidence[2]) ELSE 0) {UNIFLOW} UNITS: Meters/Week Regeneration[Villages] = IF (Shrubs or degraded > 0) THEN Shrubs_or_degraded*Rate_of_regeneration/Week ELSE 0 {UNIFLOW} **OUTFLOW PRIORITY: 1 UNITS:** Hectares/Week Rewetting[Villages] = IF (Rewetting_indicator = 1 AND Depth_of_water_table > 0) THEN Depth of water table/Week MOD Inflow to water table/Week ELSE 0 {UNIFLOW} UNITS: Meters/Week Village expansion[Villages] = IF(Built village extent>Total land area) THEN 0 ELSE (.Population*Land_per_person-DELAY(.Population*Land_per_person, DT))/Week {UNIFLOW} **OUTFLOW PRIORITY: 3** UNITS: Hectares/Week "1 m" = 1 UNITS: Meter "1 m / wk" = 1 UNITS: Meter/Week Ag land limit[1] = 0.01*Total land area[1] **UNITS:** Hectares $Ag_land_limit[2] = 1000$ **UNITS:** Hectares Canal_adjustment[Villages] = IF(((TIME > 52*(2025-1965)) AND Agriculture.Proportion<0.1) AND Policies.Full_rewetting = 1) THEN 0 ELSE ($IF(Depth_of_water_table < 0.4)$ THEN (IF (TIME > 52*15) THEN "1_m"/DT ELSE 0) ELSE 0) UNITS: Meters / Week canal drain[Villages] = Extreme Value Test: Canal building* (IF (TIME >= 52*15) THEN "1_m_/_wk"+Canal_adjustment ELSE 0)

UNITS: Meters/Week Climate_change = 1*1UNITS: mm/Week Deviation[Villages] = IF(Total land area < Error check 1) THEN ABS(Total land area-Error check 1)/Week ELSE 0 UNITS: Hectares/Week $ENSO = IF(TIME \le (2021-1965)*52) THEN ENSO data ELSE ENSO Model$ UNITS: ENSO/ENSO ENSO_adjusted_weekly_rainfall = IF(ENSO_Rainfall_model < 0) THEN 0 ELSE ENSO Rainfall model UNITS: mm ENSO data = GRAPH(TIME) UNITS: ENSO/ENSO ENSO Model = (-1.25*(SIN((TIME+0.25*26)/(52*5/(PI*2))))))**UNITS: ENSO/ENSO** ENSO_Rainfall_model = (Weekly_rainfall* (1- 0.25* (IF (ENSO*10 >= 7 AND ((TIME MOD 52) < 25.7) OR ((TIME MOD 52) > 47.57)) THEN 0 ELSE 1)* (IF (ENSO*10 <= -7 AND ((TIME MOD 52) < 25.7) OR ((TIME MOD 52) > 47.57)) THEN 0 ELSE 1)* (IF (ENSO*10 >= 7 AND ((TIME MOD 52) > 25.7) OR ((TIME MOD 52) < 47.57)) THEN 5 ELSE 1)* (IF (ENSO*10 <= -7 AND ((TIME MOD 52) > 25.7) OR ((TIME MOD 52) < 47.57)) THEN 0.5 ELSE 1) * ENSO)) +-10*TIME*(Climate change-1)/5200 UNITS: mm Error check 1[Villages] = Built village extent+Forest extent+Shrubs or degraded+ Agriculture.Agricultural_land+Agriculture.Alternative_cultivation UNITS: ha Extreme_Value_Test:_Canal_building = 1 UNITS: Meters / Meters Extreme_Value_Test:_Forestry = 1 **UNITS: Hectares/Hectares** Extreme Value Test: Peat Layer = 1UNITS: Meter / Meter Fire subsidence = 0.2**UNITS:** Meters Forestry[Villages] = Extreme_Value_Test:_Forestry* IF(TIME > 52*15 AND TIME < 52*50 AND Forest_extent > 0.1) THEN 0.02/52*INIT(Forest_extent) MOD Forest_extent ELSE 0 UNITS: Hectares "Indicator - free area"[1] = IF (Total land area[1]-Agriculture.Agricultural land[1]>=0) THEN 1 ELSE 0 **UNITS:** Hectares / Hectares "Indicator_-_free_area"[2] = IF (Total_land_area[2]-Agriculture.Agricultural_land[2]>=0) THEN 1 ELSE 0 UNITS: Hectares / Hectares Inflow to water table[Villages] = (ENSO Rainfall model/Rainfall to water table ratio-0.5) **UNITS:** Meters Land constraints[1] = 10**UNITS:** Hectares Land constraints[2] = 992**UNITS: Hectares** Land_per_person[Villages] = GRAPH(TIME) **UNITS:** Hectares/People Peat_layer[1] = IF(Peatland_layer_depth[1]*Extreme_Value_Test:_Peat_Layer-Subsided_peat_layer[1] > 0) THEN Peatland_layer_depth[1]-Subsided_peat_layer[1] ELSE 0 UNITS: Meter Peat layer[2] = IF(Peatland layer depth[2]*Extreme Value Test: Peat Layer-Subsided_peat_layer[2] > 0) THEN Peatland_layer_depth[2]-Subsided_peat_layer[2] ELSE 0

UNITS: Meter Peat_swamp_vulnerability_to_fire[Villages] = (IF(Depth_of_water_table<= 0) THEN 0 ELSE 1) UNITS: Meter / Meter Peatland layer depth[1] = 10**UNITS:** Meters Peatland layer depth[2] = 5**UNITS:** Meters Rainfall = (140*SIN((TIME+0.25*26)*PI/26)+245) UNITS: mm Rainfall_to_water_table_ratio = 80 UNITS: mm/Meters Rate of fire subsidence[Villages] = Fire subsidence *(Fire.Burnt shrub area+Deforestation)/Total land area UNITS: Meter/Week Rate_of_regeneration[Villages] = IF(Depth_of_water_table <=0) THEN .1/52 ELSE .01/52 UNITS: Hectares / Hectares Rate of Subsidence[Villages] = (IF(Depth of water table > 0) THEN 1 ELSE 0)* (IF(Peat layer > 0)) 0) THEN 1 ELSE 0)* IF (((RoS_linear_variable*Weekly_water_table+RoS_constant)/Weeks_per_year)<=0) THEN 0 ELSE (IF (Peat_layer<Weekly_water_table) THEN ((RoS_linear_variable*Peat_layer+RoS_constant)/Weeks_per_year) ELSE ((RoS_linear_variable*Weekly_water_table+RoS_constant)/Weeks_per_year)) UNITS: Meter/Week Ref_mode:_Kal_Ag_land = GRAPH(TIME) **UNITS:** Hectares Ref_mode:_Kal_Built_extent = GRAPH(TIME) **UNITS:** Hectares Ref_Mode:_Kal_degraded_land = GRAPH(TIME) **UNITS:** Hectares Ref mode: Kal Forest extent = GRAPH(TIME) UNITS: Hectares Ref_mode:_TN_Ag_land = GRAPH(TIME) **UNITS:** Hectares Ref_mode:_TN_Built_extent = GRAPH(TIME) **UNITS:** Hectares Ref Mode: TN degraded land = GRAPH(TIME) **UNITS:** Hectares Ref mode: TN Forest extent = GRAPH(TIME).810514), (5199, 4531.810514) {GF EXTRAPOLATED} UNITS: Hectares Rewetting_indicator[Villages] = IF(((TIME > 52*(2025-1965)) AND Agriculture.Proportion<Transition threshold) AND Policies.Full rewetting = 1) THEN 1 ELSE 0 UNITS: Metre / Metre RoS constant[Villages] = 1.24/100UNITS: Meter / Year RoS linear variable[Villages] = 0.0431UNITS: Meter / Meter / Year ST:_Transition_Threshold = 1*0.1/0.1*1UNITS: Tonne / Tonne Total land area[1] = 19482.69089**UNITS:** Hectares Total land area[2] = 3392.865705**UNITS:** Hectares Transition_threshold[Villages] = 0.1*ST:_Transition_Threshold UNITS: Tonne / Tonne

Week = 1
UNITS: Week
Weekly_rainfall = Rainfall/(52/12)
UNITS: mm
Weekly_water_table[Villages] = Depth_of_water_table-Inflow_to_water_table
UNITS: Meter
Weeks_per_year = 52
UNITS: Weeks / Year

Policies:

Alternative livelihood policy[Villages] = 1 UNITS: IDR / IDR Alternative_livelihood_policy_cap[1] = IF(TIME +"Weeks_/_Year"*Initial_year < Alternative_livelihood.Alternative_livelihood_program_commencement_year[1]*"Weeks_/_Year") THEN 0.1 ELSE (IF((Scenario=1 OR Scenario=2)) THEN 0.1 ELSE IF(Scenario=3 OR Scenario=4) THEN 1 ELSE 0) UNITS: People / People Alternative_livelihood_policy_cap[2] = IF(TIME +"Weeks_/_Year"*Initial_year < Alternative_livelihood.Alternative_livelihood_program_commencement_year[1]*"Weeks_/_Year") THEN 0.5 ELSE (IF(Scenario=1 OR Scenario=2) THEN 0.5 ELSE IF(Scenario=3 OR Scenario=4) THEN 1 ELSE 0) UNITS: People / People Full_rewetting = IF(Scenario=1 OR Scenario = 2) THEN 0 ELSE 1 **UNITS:** People/People Initial_year = 1965UNITS: Year Permanent_flooding[Villages] = IF(Scenario=1) THEN 0 ELSE 1 UNITS: Meter / Meter Scenario = 1UNITS: Unit / Unit "Weeks_/_Year" = 52UNITS: Weeks/Year

Tests:

Kal_Hotspots = GRAPH(TIME) UNITS: Hectares TN_Hotspots = GRAPH(TIME) UNITS: Hectares

Biochar:

BC_per_hectare[Villages](t) = BC_per_hectare[Villages](t - dt) + (Biochar_application[Villages] -Biochar_mineralisation[Villages]) * dt {NON-NEGATIVE} INIT BC_per_hectare[Villages] = 0 UNITS: Tonnes / Hectare Total_biochar[Villages](t) = Total_biochar[Villages](t - dt) + (BC_application[Villages]) * dt {NON-NEGATIVE} INIT Total_biochar[Villages] = 0 UNITS: Tonnes BC_application[Villages] = Agriculture.Agricultural_land[2]*Biochar_application[2] {UNIFLOW} UNITS: Tonnes/Week Biochar_application[Villages] = Biochar_cumulation_rate {UNIFLOW} UNITS: Tonnes / Hectare/Weeks Biochar_mineralisation[Villages] = BC_per_hectare*EXP(-10)/DT {UNIFLOW} UNITS: Tonnes / Hectare/Weeks Aggregate_Biochar_Yield_Effect[Villages] = Biochar application rate/Targeted application multiplier*Biochar vield effect*Biochar use* (IF(BC_per_hectare>0) THEN 1 ELSE 0)*Hectare + (BC_per_hectare/Year-Biochar_application_rate)* Yield_accumulation*Cumulative_biochar_effect*Biochar_use*Hectare UNITS: Tonne/Tonne/Year +(Total biochar-Biochar application rate)*.0.1/10*Cumulative effect Biochar application rate[Villages] = 1 UNITS: Tonne/Hectare/Year Biochar_cumulation_rate[Villages] = IF (TIME > 52*60) THEN Biochar_application_rate/Weeks_per_year*Biochar_use ELSE 0 UNITS: Tonne / Hectare/Weeks Biochar_use[Villages] = IF(ST:_Biochar_use = 1) THEN 1 ELSE 0 UNITS: Tonne / Tonne Biochar_yield_effect[Villages] = 0.02*ST:_BC_yield_effect UNITS: Tonne / Tonne Cumulative_biochar_effect[Villages] = 1 UNITS: Tonne/Tonne Hectare = 1**UNITS: Hectare** ST:_BC_yield_effect[Villages] = 1*1 UNITS: Tonne / Tonne ST: Biochar use = 1*1UNITS: Person / Person Targeted application multiplier = 0.05UNITS: Tonne Weeks_per_year[Villages] = 52 UNITS: Week / Year Year = 1UNITS: Year Yield accumulation[Villages] = .01UNITS: Hectare/Hectare/Tonne **Alternative livelihood:** Alternative_Labourers[Villages](t) = Alternative_Labourers[Villages](t - dt) + (New_alternatives[Villages] - Alternatives_leave[Villages]) * dt {NON-NEGATIVE} INIT Alternative_Labourers[Villages] = 0 **UNITS:** People Alternatives leave[Villages] = IF (Alternative Labourers ≤ 0) THEN 0 ELSE IF(Expected Alternative Average Income< Labour.Max Income) THEN (Alternative Labourers MOD Labour.Mod_throughput)/Week ELSE 0 {UNIFLOW} UNITS: People/Week New_alternatives[Villages] = Alternative_livelihood_cap* Labour.New_Alternative {UNIFLOW} **UNITS:** People/Week "52wk_MA_Alternative_Income_per_worker"[Villages] = MEAN(Alternative livelihood per worker, DELAY(Alternative livelihood per worker, 1), DELAY(Alternative_livelihood_per_worker, 2), DELAY(Alternative_livelihood_per_worker, 3), DELAY(Alternative livelihood per worker, 4), DELAY(Alternative livelihood per worker, 5), DELAY(Alternative_livelihood_per_worker, 6), DELAY(Alternative_livelihood_per_worker, 7), DELAY(Alternative_livelihood_per_worker, 8), DELAY(Alternative_livelihood_per_worker, 9), DELAY(Alternative_livelihood_per_worker, 10), DELAY(Alternative_livelihood_per_worker, 11), DELAY(Alternative livelihood_per_worker, 12), DELAY(Alternative_livelihood_per_worker, 13), DELAY(Alternative_livelihood_per_worker, 14), DELAY(Alternative_livelihood_per_worker, 15), DELAY(Alternative_livelihood_per_worker, 16), DELAY(Alternative_livelihood_per_worker, 17), DELAY(Alternative_livelihood_per_worker, 18), DELAY(Alternative_livelihood_per_worker, 19), DELAY(Alternative livelihood per worker, 20), DELAY(Alternative livelihood per worker, 21), DELAY(Alternative_livelihood_per_worker, 22), DELAY(Alternative_livelihood_per_worker, 23),

DELAY(Alternative_livelihood_per_worker, 24), DELAY(Alternative_livelihood_per_worker, 25), DELAY(Alternative_livelihood_per_worker, 26), DELAY(Alternative_livelihood_per_worker, 27), DELAY(Alternative_livelihood_per_worker, 28), DELAY(Alternative_livelihood_per_worker, 29), DELAY(Alternative_livelihood_per_worker, 30), DELAY(Alternative_livelihood_per_worker, 31), DELAY(Alternative livelihood per worker, 32), DELAY(Alternative livelihood per worker, 33), DELAY(Alternative_livelihood_per_worker, 34), DELAY(Alternative_livelihood_per_worker, 35), DELAY(Alternative livelihood per worker, 36), DELAY(Alternative livelihood per worker, 37), DELAY(Alternative_livelihood_per_worker, 38), DELAY(Alternative_livelihood_per_worker, 39), DELAY(Alternative_livelihood_per_worker, 40), DELAY(Alternative_livelihood_per_worker, 41), DELAY(Alternative_livelihood_per_worker, 42), DELAY(Alternative_livelihood_per_worker, 43), DELAY(Alternative livelihood per worker, 44), DELAY(Alternative livelihood per worker, 45), DELAY(Alternative_livelihood_per_worker, 46), DELAY(Alternative_livelihood_per_worker, 47), DELAY(Alternative_livelihood_per_worker, 48), DELAY(Alternative_livelihood_per_worker, 49), DELAY(Alternative_livelihood_per_worker, 50), DELAY(Alternative_livelihood_per_worker, 51)) UNITS: IDR/People/Week Alternative_livelihood_cap[Villages] = IF(Labour.Workforce <=0) THEN 0 ELSE IF(Alternative Labourers/(Policies.Alternative livelihood policy cap*Labour.Workforce) >= 1) THEN 0 ELSE 1 **UNITS:** People/People Alternative_livelihood_per_worker[Villages] = Policies.Alternative_livelihood_policy* (IF(Fire.Air pollution index > 2000) THEN 0.75 ELSE IF(Fire.Air pollution index > 1000) THEN 0.9 ELSE 1)* (IF(TIME <= (2015-1965)*52) THEN 0 ELSE 1) * ((1+Biochar.Aggregate Biochar Yield Effect*ST: Biochar Alternative Livelihood))* Policies.Alternative_livelihood_policy + ((Initial_alternative_livelihood* (1+ Income_per_capita_growth/52) ^((TIME-40*52)/Week))) UNITS: IDR/People/Week Alternative_livelihood_program_commencement_year[Villages] = 2025 **UNITS: Year** Alternative total income[Villages] = Alternative livelihood per worker*Alternative Labourers UNITS: IDR/Week Expected_Alternative_Average_Income[Villages] = IF(Policies.Alternative_livelihood_policy_cap*Labour.Workforce<=Alternative_Labourers) THEN 0 ELSE "52wk_MA_Alternative_Income_per_worker" UNITS: IDR/People/Week Income_per_capita_growth[Villages] = 0.0315 UNITS: Rate/Rate Initial_alternative_livelihood[Villages] = 0.8*10^6 * ST:_Alt_livelihood *(IF(TIME > (Alternative livelihood program commencement year-1965)*"Weeks / Year") THEN 1 ELSE 0) UNITS: IDR/People/Week $ST:_Alt_livelihood = 1*1$ UNITS: IDR / IDR ST: Biochar Alternative Livelihood[Villages] = 1*1UNITS: Year*IDR/People/Week Week = 1UNITS: Week "Weeks / Year" = 52UNITS: Weeks / Year Fire: Ag_Farmer_Ignition_Point_Frequency = ST:_Ignition_Point_Frequency*0.2 UNITS: IP / People / Week Air pollution index[Villages] = Burnt shrub area[1]*Pollution calibration UNITS: µg/m³/Week

Burn_area_:_Hotspot_ratio = 15.5 UNITS: Hectare / IP Burnt_Forest_Area[Villages] = (Land_use.Forest_extent*Land_use.Peat_swamp_vulnerability_to_fire)*Prob_of_forest_burning*(IF(Land_use.ENSO_adjusted_weekly_rainfall<30) THEN 1 ELSE 0) / Week UNITS: Hectares/Week Burnt_shrub_area[1] = Hotspots[1] *Burn_area_:_Hotspot_ratio UNITS: Hectares / Week Burnt shrub area[2] = Hotspots[2] *Burn area : Hotspot ratio UNITS: Hectares / Week Expectation_of_PKY_becoming_capital = IF (52*(2019.8-1965) > TIME AND TIME > 52*(2019-1965) > 52*(201965)) THEN 1 ELSE 0 **UNITS:** People/People General population Ignition Point Frequency = .045*ST: Ignition Point Frequency UNITS: IP / People / Week Hotspots[1] =Potential_Hotspots[1]*vulnerability_of_degraded_peat_swamp_to_burning[1]/10^6*Land_use.Shrub s_or_degraded[1] UNITS: IP / Week Hotspots[2] =Potential_Hotspots[2]*vulnerability_of_degraded_peat_swamp_to_burning[2]/10^6*Land_use.Shrub s_or_degraded[2]*(1+Expectation_of_PKY_becoming_capital*17) UNITS: IP / Week Ignition_points[Villages] = (IF(Land_use.ENSO_adjusted_weekly_rainfall<30) THEN 1 ELSE 0)*(Agriculture.Farmers*Ag Farmer Ignition Point Frequency+(.Population-Agriculture.Farmers)*General_population_Ignition_Point_Frequency) UNITS: IP / Week Pollution_calibration[Villages] = 70 UNITS: µg/m³/hectare Potential_Hotspots[1] = IF(Land_use.ENSO<0) THEN 0 ELSE 5*Ignition points[1]*EXP(Land use.ENSO) UNITS: IP / Week Potential_Hotspots[2] = IF(Land_use.ENSO<0) THEN 0 ELSE 3*Ignition_points[2]*EXP(Land_use.ENSO) UNITS: IP / Week Prob_of_forest_burning[Villages] = 1/100/52 UNITS: Hectares / Hectares ST: Ignition Point Frequency = 1*1UNITS: IP / People / Week Total Burn Area[Villages] = Burnt shrub area+Burnt Forest Area UNITS: Hectares/Week vulnerability_of_degraded_peat_swamp_to_burning[Villages] = (IF(Land_use.ENSO_adjusted_weekly_rainfall<30) THEN ABS((Land use.ENSO adjusted weekly rainfall - 25)/Vulnerability ratio) ELSE 0) *(IF(Land use.Weekly water table<0.041) THEN 0 ELSE 1) UNITS: mm/mm/Hectare Vulnerability_ratio[Villages] = 20 UNITS: Hectare*mm Week = 1UNITS: Week **GHG** emissions: Net_accumulated_GHG_emissions_from_reduced_AGB[Villages](t) = Net accumulated GHG emissions from reduced AGB[Villages](t - dt) + (Mineralisation[Villages] - Regeneration[Villages]) * dt

INIT Net_accumulated_GHG_emissions_from_reduced_AGB[Villages] = 0 UNITS: Tonnes $Total_PS_accumulated_emissions[Villages](t) = Total_PS_accumulated_emissions[Villages](t - dt) +$ (Total_PS_emissions_rate[Villages]) * dt {NON-NEGATIVE} INIT Total_PS_accumulated_emissions[Villages] = 0 **UNITS:** Tonnes Mineralisation[Villages] = IF((CO2e sequestered in AGB-DELAY(CO2e sequestered in AGB, 1))/Week < 0) THEN -1/Week*(CO2e_sequestered_in_AGB-DELAY(CO2e_sequestered_in_AGB, 1)) ELSE 0 {UNIFLOW} UNITS: Tonnes/Week Regeneration[Villages] = IF((CO2e_sequestered_in_AGB-DELAY(CO2e_sequestered_in_AGB, 1))/Week > 0) THEN (CO2e_sequestered_in_AGB-DELAY(CO2e_sequestered_in_AGB, 1))/Week ELSE 0 {UNIFLOW} UNITS: Tonnes/Week Total PS emissions rate[Villages] = Carbon_content_in_tonnes_per_hectare_of_1m_deep_peat*CO2e:C *(Land_use.Rate_of_Subsidence+Land_use.Rate_of_fire_subsidence) *(IF(Land_use.Peat_layer>0) THEN 1 ELSE 0) *(Degraded_land_vulnerable_to_fire) {UNIFLOW} UNITS: Tonnes/Week $"1m_depth" = 1$ UNITS: meter AGB GHG flux[Villages] = Mineralisation-Regeneration-DELAY(Mineralisation-Regeneration, 1) UNITS: Tonnes/Week Annualised_Emissions_per_capita[Villages] = IF(.Population = 0) THEN 0 ELSE Total PS emissions rate/.Population*Weeks per year UNITS: Tonnes / Person / Year Carbon_content_in_tonnes_per_hectare_of_1m_deep_peat[Villages] = Peat_C_content*Peatland_bulk_density *"m^3/ha" / "1m_depth" UNITS: Tonnes / hectare / Meter CO2e_sequestered_in_AGB[Villages] = Forest_AGB_Total_C+Shrubland_BGB_Total_C **UNITS:** Tonnes CO2e:C = 44/12UNITS: Tonnes/Tonnes Degraded_land_vulnerable_to_fire[Villages] = IF(Land_use.Peat_swamp_vulnerability_to_fire>0) THEN (Land_use.Shrubs_or_degraded+Agriculture.Agricultural_land) ELSE 0 **UNITS:** Hectares Forest_AGB[Villages] = 29.8*0.5 UNITS: Tonnes / hectare Forest_AGB_Total_C[Villages] = Land_use.Forest_extent*Forest_CO2e **UNITS:** Tonnes Forest_CO2e[Villages] = Forest_AGB*CO2e:C UNITS: Tonnes/hectare $m^3/ha''[Villages] = 10000$ UNITS: Cubic Metre / Hectare Peat C content[Villages] = 0.56UNITS: Tonne / Tonne Peatland_bulk_density[Villages] = .09 UNITS: Tonne / Cubic Metre Ref_Mode:_Hooijer_et_al_2006 = 220 UNITS: tonne CO2e / yr / ha Ref_Mode:_Hoscilo_2009 = 78.57 UNITS: tonne CO2e / yr / ha Shrubland_AGB[Villages] = 0.5*(0.5)+8.5*(0.2)**UNITS:** Tonnes/Hectare Shrubland_BGB_Total_C[Villages] = Shrubland_CO2e*Land_use.Shrubs_or_degraded UNITS: Tonnes Shrubland_CO2e[Villages] = Shrubland_AGB*CO2e:C

UNITS: Tonnes/Hectare Total_accumulated_emissions[Villages] = Total_PS_accumulated_emissions+Net_accumulated_GHG_emissions_from_reduced_AGB-Biochar.Total_biochar*CO2e:C **UNITS:** Tonne "Total_accumulated_emissions_in_tonnes_CO2e_/_ha_/_yr"[Villages] = Total_accumulated_emissions/Land_use.Total_land_area/(TIME/Weeks_per_year) UNITS: Tonne / hectare / year Total_emissions_rate[Villages] = Total_PS_emissions_rate+AGB_GHG_flux UNITS: Tonnes/Week Week = 1UNITS: Week Weeks_per_year = 52 UNITS: Week / Year { The model has 411 (723) variables (array expansion in parens). In root model and 10 additional modules with 0 sectors. Stocks: 23 (46) Flows: 44 (88) Converters: 344 (589) Constants: 82 (115) Equations: 306 (562) Graphicals: 20 (27) }