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Figure A1. Sensitivity analysis of 𝑃𝑠 on different Θ and 𝜑 based on (a) horizontal spread rate 13 

(𝑆𝐻) and (b) smouldering width (𝑊𝑆). Regions shaded in black represent simulations with non-14 

circular shape (unexpected results). 15 

 16 

B. Derivation from first principle 17 

Heat release rate 18 

Fig. 3 illustrates consumed peat at one time-step and its components. Consumed peat 19 

with the volume of (𝛿𝑉 = ∆𝑥2𝛿) contains water with a volume of 𝛿𝑉𝑤, inorganic content with a 20 

volume of 𝛿𝑉𝑖, air with a volume of 𝛿𝑉𝑎, and organic content with a volume of 𝛿𝑉𝑜. The heat 21 

release rate (𝑄𝑅) depends on the heat generation per 𝑚3 (∆𝐻𝑐) and 𝛿𝑉𝑜 as shown in Eq. A1. By 22 

using mathematical operations, 𝛿𝑉𝑜 can be formulated as a function of organic density (𝜌𝑜), 23 

particle density of the peat (𝜌𝑜
,
), and 𝛿𝑉. The thickness of the consumed peat is a function of 24 

vertical spread rate (𝑆𝑑), therefore, 𝑄𝑅 can be formulated as shown in Eq. A6 where 𝑏1 is a 25 

constant. By assuming constant ∆𝐻𝑐, 𝜌𝑜
,
 and ∆𝑥, Eq. A6 can be simplified to become Eq. 3. 26 
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 33 

Heat transfer coefficient 34 

Fig. A2 shows the physical analogy of heat transfer in BARA and heat transfer in the 35 

physical term. If two adjacent cells have different heat values (𝐻), this condition is analogous to 36 

having different temperatures (𝑇) in physical term. Due to the temperature difference (∆𝑇), there 37 

is heat transfer (𝑄) from a cell with higher temperature (red) to a cell with lower temperature 38 

(blue). By assuming a 1D transient conduction heat transfer (Eq. A7) with effective thermal 39 

conductivity, 𝑘𝑒 (see Eq. A8) for porous media following Huang et al. (2015), a finite difference 40 

method is applied to the Eq. A7 which results in Eq. A9. In these equations, 𝑇 is temperature, 𝑡 is 41 

time, 𝜌𝑏 is bulk density, 𝑐 is specific heat, 𝑥 is distance, 𝑘 is material thermal conductivity, 𝛷 is 42 

porosity, 𝛾 is the radiative conductivity coefficient, and 𝜎 is the Stefan–Boltzmann constant. 43 

Meanwhile, ∆𝑇1−2 is the temperature difference between cell 1 (west neighbour) and cell 2 44 

(centre cell) and ∆𝑇3−2 is the temperature difference between cell 2 and cell 3 (east neighbour). 45 

These equations are implemented in BARA where the heat transfer is discretized to one time step 46 

and to one neighbour (the other three sides of the cell are assumed to be insulated). Therefore, in 47 

Eq. A9, ∆𝑡 = 1 and ∆𝑇3−2 = 0, resulting in Eq. A10 when the temperature is translated to heat 48 

value. These processes are repeated independently for the other three neighbours (in this example 49 

North, East, South), therefore, although the heat transfers between a centre cell and each 50 

neighbour are not directly connected, eventually they affect one another. This neighbourhood 51 

concept is one of the reasons CA becomes computationally efficient. To further simplify the 52 

model, 𝑘𝑒 is set to be constant resulting in Eq. A11 where 𝑏2 is a constant. In BARA, the heat 53 

value transferred to the neighbour (𝑄) is 𝛿𝐻 ∆𝑙⁄ , where ∆𝑙 is the number of cells that separate the 54 
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two cells which are interacting. Therefore, Eq. A11 can be further modified to be Eq. A12 where 55 

𝜑 is heat transfer coefficient in BARA which depends on the 𝜌𝑏 and 𝑐 of the sample. 56 

 57 

Figure A2. Schematic of analogy of heat transfer in BARA and physical analogy. 58 
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