Supplementary Material

Forest fire progress monitoring using dual-polarisation Synthetic Aperture Radar (SAR) images combined with multi-scale segmentation and unsupervised classification

 $Age\ Shama^A,\ Rui\ Zhang^{A,*},\ Ting\ Wang^A,\ Anmengyun\ Liu^A,\ Xin\ Bao^A,\ Jichao\ Lv^A,\ Yuchun\ Zhang^A\ and\ Guoxiang\ Liu^A$

^AFaculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China

*Correspondence to: Email: <u>zhangrui@swjtu.edu.cn</u>

Supplementary Table S1. Sentinel-1 data parameters

Supplementary Material

Number	Acquisition date	Polarization mode	Orbital direction	Pixel spacing (Azimuth × Range) (m)
1	2017-11-22	VV+VH	Ascending	13.941×2.329
2	2017-11-28	VV+VH	Descending	13.941×2.329
3	2017-12-10	VV+VH	Descending	13.941×2.329
4	2017-12-16	VV+VH	Ascending	13.941×2.329
5	2018-01-15	VV+VH	Descending	13.941×2.329

Supplementary Table S2. Feature parameter information based on polarized SAR images construction

Feature types Feature names		Meaning of features		
scattering intensity	BBR_{gamma}	backscatter burn ratio of the gamma value		
	BBR_{sigma}	backscatter burn ratio of the sigma value		
•	D_{alpha}	the polarization burn difference constructed using scattering angle		
scattering mechanism	Dentropy	the polarization burn difference constructed using entropy		
meenamsm	D _{anisotropy}	the polarization burn difference constructed using anisotropy		
	P _{mean}	texture feature change parameters calculated with mean		
	P _{variance}	texture feature change parameters calculated with variance		
	Pdissimilarity	texture feature change parameters calculated with dissimilarity		
texture	P_{ASM}	texture feature change parameters calculated with angular second moment		
features	Pentropy	texture feature change parameters calculated with information entropy		
	P _{correlation}	texture feature change parameters calculated with correlation		
	Phomogeneity	texture feature change parameters calculated with homogeneity		
	P _{contrast}	texture feature change parameters calculated with contrast		

Supplementary Fig. S1. Land cover map and NDVI map on the Thomas Fire.

Supplementary Fig. S2. Multi-scale segmentation results

Supplementary Fig. S3. (a) Silhouette score values; (b) Map of burned area extraction results when K=2.