International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Remote sensing for prediction of 1-year post-fire ecosystem condition

Leigh B. Lentile A D , Alistair M. S. Smith B , Andrew T. Hudak C , Penelope Morgan B , Michael J. Bobbitt B , Sarah A. Lewis C and Peter R. Robichaud C

A Department of Forestry and Geology, University of the South, Sewanee, TN 37383, USA.

B Department of Forest Resources, University of Idaho, Moscow, ID 83844-1133, USA.

C Rocky Mountain Research Station, US Department of Agriculture Forest Service, Moscow, ID 83843, USA.

D Corresponding author. Email:

International Journal of Wildland Fire 18(5) 594-608
Submitted: 12 July 2007  Accepted: 21 August 2008   Published: 10 August 2009


Appropriate use of satellite data in predicting >1year post-fire effects requires remote measurement of surface properties that can be mechanistically related to ground measures of post-fire condition. The present study of burned ponderosa pine (Pinus ponderosa) forests in the Black Hills of South Dakota evaluates whether immediate fractional cover estimates of char, green vegetation and brown (non-photosynthetic) vegetation within a pixel are improved predictors of 1-year post-fire field measures, when compared with single-date and differenced Normalized Burn Ratio (NBR and dNBR) indices. The modeled estimate of immediate char fraction either equaled or outperformed all other immediate metrics in predicting 1-year post-fire effects. Brown cover fraction was a poor predictor of all effects (r2 < 0.30), and each remote measure produced only poor predictions of crown scorch (r2 < 0.20). Application of dNBR (1 year post) provided a considerable increase in regression performance for predicting tree survival. Immediate post-fire NBR or dNBR produced only marginal differences in predictions of all the 1-year post-fire effects, perhaps limiting the need for prefire imagery. Although further research is clearly warranted to evaluate fire effects data available 2–20 years after fire, char and green vegetation fractions may be viable alternatives to dNBR and similar indices to predict longer-term post-fire ecological effects.

Additional keywords: burn severity, char, Landsat ETM+, ponderosa pine, subpixel, unmixing.


Atkinson PMCutler MEJLewis H1997Mapping sub-pixel proportional land cover with AVHRR imagery.International Journal of Remote Sensing18917935doi:10.1080/014311697218836

Bobbe T, Finco MV, Quayle B, Lannom K, Sohlberg R, Parsons A (2003) Field measurements for the training and validation of burn severity maps from spaceborne, remotely sensed imagery. USDI Joint Fire Science Program, Final Project Report JFSP RFP 2001–2. (Boise, ID)

Borel CCGerstl SAW1994Non-linear spectral mixing models for vegetative and soil surfaces.Remote Sensing of Environment47403416doi:10.1016/0034-4257(94)90107-4

Brewer CKWinne JCRedmond RLOpitz DWMagrich MV2005Classifying and mapping wildfire severity: a comparison of methods.Photogrammetric Engineering and Remote Sensing711113111320

Brown JK, Smith JK (Eds) (2000) Wildland fire in ecosystems: effects of fire on flora. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42. (Ogden, UT)

Chen XVierling LRowell EDeFelice T2004Using Lidar and effective LAI to evaluate IKONOS and Landsat 7 ETM+ vegetation estimates in a ponderosa pine forest.Remote Sensing of Environment911426

Clark RNLucey PG1984Spectral properties of ice–particulate mixtures and implications for remote sensing 1. Intimate mixtures.Journal of Geophysical Research89B763416348doi:10.1029/JB089IB07P06341

Cochrane MASouza CM1998Linear mixture model classification of burned forests in the Eastern Amazon.International Journal of Remote Sensing191734333440doi:10.1080/014311698214109

Cocke AEFulé PZCrouse JE2005Comparison of burn severity assessments using differenced Normalized Burn Ratio and ground data.International Journal of Wildland Fire142189198doi:10.1071/WF04010

Cracknell AP1998Synergy in remote sensing – what’s in a pixel?International Journal of Remote Sensing191120252047doi:10.1080/014311698214848

Crockford RHRichardson DP2000Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate.Hydrological Processes1429032920doi:10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6

De Santis AChuvieco E2007Burn severity estimation from remotely sensed data: performance of simulation versus empirical models.Remote Sensing of Environment108422435doi:10.1016/J.RSE.2006.11.022

Doerr SHCerda A2005Fire effects on soil system functioning: new insights and future challenges.International Journal of Wildland Fire14339342doi:10.1071/WF05094

Dozier J, Strahler AH (1983) Ground investigations in support of remote sensing. In ‘Manual of Remote Sensing’. (Eds RN Colwell, DS Simonett, GA Thorley) pp. 959–986. (American Society of Photogrammetry: Falls Church, VA)

Drake NAMackin SSettle JJ1999Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery.Remote Sensing of Environment681225doi:10.1016/S0034-4257(98)00097-2

Drake NA, White K (1991) Linear mixture modelling of Landsat Thematic Mapper data for mapping the distribution and abundance of gypsum in the Tunisian Southern Atlas. In ‘Spatial Data 2000: Proceedings of a Joint Conference of the Photogrammetric Society, the Remote Sensing Society, the American Society for Photogrammetry and Remote Sensing’, Christ Church, Oxford. (Ed. I Dowman) pp. 168–177. (Remote Sensing Society: Nottingham, UK)

Elvidge CD1990Visible and near-infrared reflectance characteristics of dry plant materials.International Journal of Remote Sensing1117751795doi:10.1080/01431169008955129

Epting JVerbyla DSorbel B2005Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+.Remote Sensing of Environment963–4328339doi:10.1016/J.RSE.2005.03.002

Eva HLambin EF1998aBurnt area mapping in Central Africa using ATSR data.International Journal of Remote Sensing191834733497doi:10.1080/014311698213768

Eva HLambin EF1998bRemote sensing of biomass burning in tropical regions: sampling issues and multisensor approach.Remote Sensing of Environment64292315doi:10.1016/S0034-4257(98)00006-6

Foody GMLucas RMCurran PJHonzak M1997Non-linear mixture modelling without end-members using an artificial neural network.International Journal of Remote Sensing184937953doi:10.1080/014311697218845

Foody GM2000Estimation of sub-pixel land cover composition in the presence of untrained classes.Computers & Geosciences264469478doi:10.1016/S0098-3004(99)00125-9

Goforth BRGraham RCHubbert KRZanner CWMinnich RA2005Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California.International Journal of Wildland Fire14343354doi:10.1071/WF05038

Holden ZSmith AMSMorgan PRollins MGGessler PE2005Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data.International Journal of Remote Sensing262148014808doi:10.1080/01431160500239008

Hudak AT, Morgan P, Bobbitt M, Lentile L (2007a) Characterizing stand-replacing harvest and fire disturbance patches in a forested landscape: a case study from Cooney Ridge, Montana. In ‘Understanding Forest Disturbance and Spatial Patterns: Remote Sensing and GIS Approaches’. (Eds MA Wulder, SE Franklin) pp. 209–231. (Taylor & Francis: London)

Hudak ATMorgan PBobbitt MJSmith AMSLewis SALentile LBRobichaud PRClark JTMcKinley RA2007bThe relationship of multispectral satellite imagery to immediate fire effects.Fire Ecology36490

Huete AREscadafal R1991Assessment of biophysical soil properties through spectral decomposition techniques.Remote Sensing of Environment35149159

Key CH2006Ecological and sampling constraints on defining landscape fire severity.Fire Ecology22178203

Key CH, Benson NC (2006) Landscape assessment: ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio. In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, S Sutherland, LJ Gangi) USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD, pp. LA1–51. (Ogden, UT)

Keyser TL (2007) Changes in forest structure, community composition, and development in ponderosa pine forests following a mixed-severity wildfire in the Black Hills, SD, USA. PhD thesis, Colorado State University.

Keyser TLSmith FWLentile LBShepperd WD2006Modeling post-fire mortality of ponderosa pine following a mixed-severity wildfire in the Black Hills: the role of tree morphology and direct fire effects.Forest Science52530539

Keyser TLSmith FWShepperd WD2005Trembling aspen response to a mixed-severity wildfire in the Black Hills, South Dakota, USA.Canadian Journal of Forest Research3526792684

Landmann T2003Characterizing sub-pixel Landsat ETM+ fire severity on experimental fires in the Kruger National Park, South Africa.South African Journal of Science99357360

Lawrence RLRipple WJ1998Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape: Mount St Helens, Washington.Remote Sensing of Environment6491102

Lentile LB (2004) Causal factors and consequences of mixed-severity fire in Black Hills ponderosa pine forests. PhD Thesis, Colorado State University.

Lentile LBSmith FWShepperd WD2005Patch structure, fire-scar formation and tree regeneration in a large mixed-severity fire in the South Dakota Black Hills, USA.Canadian Journal of Forest Research3528752885doi:10.1139/X05-205

Lentile LBSmith FWShepperd WD2006aThe influence of topography and forest structure on patterns of mixed-severity fire in the South Dakota Black Hills.International Journal of Wildland Fire154557566doi:10.1071/WF05096

Lentile LBHolden ZASmith AMSFalkowski MJHudak ATMorgan PLewis SAGessler PEBenson NC2006bRemote sensing techniques to assess active fire and post-fire effects.International Journal of Wildland Fire15319345doi:10.1071/WF05097

Lentile LB, Morgan P, Hardy C, Hudak A, Means R, Ottmar RD, Robichaud PR, Sutherland EK, et al. (2007a) Value and challenges of conducting rapid response on wildland fires. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-193. (Fort Collins, CO)

Lentile LBMorgan PHudak ATBobbitt MJLewis SASmith AMSRobichaud PR2007bPost-fire burn severity and vegetation response following eight large wildfires across the western US.Fire Ecology391108

Lewis SAWu JQRobichaud PR2006Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado.Hydrological Processes20116

Lewis SALentile LBHudak ATRobichaud PRMorgan PBobbitt MJ2007Mapping ground cover using hyperspectral remote sensing after the 2003 Simi and Old wildfires in Southern California.Fire Ecology3109128

Litton CMRyan MGKnight DHStahl PD2003Soil–surface carbon dioxide efflux and microbial biomass in relation to tree density 12 years after a stand-replacing fire in a lodgepole pine ecosystem.Global Change Biology9680696

López-García MJCaselles V1991Mapping burns and natural reforestation using Thematic Mapper data.Geocarto International63137doi:10.1080/10106049109354290

Miller JDThode AE2007Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR).Remote Sensing of Environment1096680doi:10.1016/J.RSE.2006.12.006

Miller JDYool SR2002Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data.Remote Sensing of Environment82481496doi:10.1016/S0034-4257(02)00071-8

Morgan PHardy CCSwetnam TRollins MGLong LG2001Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns.International Journal of Wildland Fire10329342doi:10.1071/WF01032

Nagler PLDaughtry CSTGoward SN2000Plant litter and soil reflectance.Remote Sensing of Environment71207215doi:10.1016/S0034-4257(99)00082-6

Odion DCHanson CT2006Fire severity in conifer forests of the Sierra Nevada, California.Ecosystems911771189doi:10.1007/S10021-003-0134-Z

Odion DCHanson CT2007Fire severity in the Sierra Nevada revisited: conclusions robust to further analysis.Ecosystems111215doi:10.1007/S10021-007-9113-0

Pannkuk CKRobichaud PR2003Effectiveness of needle cast at reducing erosion after forest fires.Water Resources Research3913331343doi:10.1029/2003WR002318

Patterson MWYool SR1998Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: a comparison of linear transformation techniques.Remote Sensing of Environment65132142doi:10.1016/S0034-4257(98)00018-2

Pereira JMC1999A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping.IEEE Transactions on Geoscience and Remote Sensing371217226doi:10.1109/36.739156

Qin WGerstl SAW20003-D scene modelling of semi-arid vegetation cover and its radiation regime.Remote Sensing of Environment74145162doi:10.1016/S0034-4257(00)00129-2

Robichaud PR2004Post-fire rehabilitation: are we learning what works?Southwest Hydrology32021

Robichaud PR, Brown RE (2000) What happened after the smoke cleared: onsite erosion rates after a wildfire in Eastern Oregon. In ‘Proceedings of the Wildland Hydrology Conference’, 20 June–2 July 1999, Bozeman, MT. (Eds DS Olsen, JP Potyondy) pp. 419–426. (American Water Resource Association: Herndon, VA)

Robichaud PRLewis SALaes DYMHudak ATKokaly RFZamudio JA2007Post-fire soil burn severity mapping with hyperspectral image unmixing.Remote Sensing of Environment108467480

Roy DPBoschetti LTrigg SN2006Remote sensing of fire severity: assessing the performance of the normalized burn ratio.IEEE Geoscience and Remote Sensing Letters31112116doi:10.1109/LGRS.2005.858485

Ryan KC, Noste NV (1985) Evaluating prescribed fires. In ‘Proceedings of the Symposium and Workshop on Wilderness Fire’, 15–18 November 1983, Missoula, MT. (Eds JE Lotan, BM Kilgore, WC Fischer, RW Mutch) USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-GTR-182, pp. 230–238. (Ogden, UT)

Safford HDMiller JDSchmidt DRoath BParsons A2007BAER soil burn severity maps do not measure fire effects to vegetation: a comment on Odion and Hanson (2006).Ecosystems11111doi:10.1007/S10021-007-9094-Z

Settle JJDrake NA1993Linear mixing and the estimation of ground cover proportions.International Journal of Remote Sensing14611591177doi:10.1080/01431169308904402

Shepperd WD, Battaglia MA (2002) Ecology, silviculture, and management of Black Hills ponderosa pine. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-97. (Fort Collins, CO)

Smith AMSHudak AT2005Estimating combustion of large downed woody debris from residual white ash.International Journal of Wildland Fire14245248doi:10.1071/WF05011

Smith AMSWooster MJDrake NADipotso FMFalkowski MJHudak AT2005Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs environments.Remote Sensing of Environment97192115doi:10.1016/J.RSE.2005.04.014

Smith AMSDrake NAWooster MJHudak ATHolden ZAGibbons CJ2007aProduction of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS.International Journal of Remote Sensing2827532775doi:10.1080/01431160600954704

Smith AMSLentile LBHudak ATMorgan P2007bEvaluation of linear spectral unmixing and ΔNBR for predicting post-fire recovery in a N. American ponderosa pine forest.International Journal of Remote Sensing2851595166doi:10.1080/01431160701395161

Stroppiana DPinnock SPereira JMCGregoire JM2002Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia.Remote Sensing of Environment822137doi:10.1016/S0034-4257(02)00021-4

Theseira MAThomas GSannier CAD2002An evaluation of spectral mixture modeling applied to a semi-arid environment.International Journal of Remote Sensing23687700doi:10.1080/01431160010019652

Theseira MAThomas GTaylor JCGemmell FVarjo J2003Sensitivity of mixture modelling to end-member selection.International Journal of Remote Sensing24715591575doi:10.1080/01431160210146631

Townshend JGRHuang CKalluri SNVDefries RSLiang D2000Beware of per-pixel characterization of land cover.International Journal of Remote Sensing214839843doi:10.1080/014311600210641

Trumbore S2006Carbon respired by terrestrial ecosystems – recent progress and challenges.Global Change Biology122141153doi:10.1111/J.1365-2486.2006.01067.X

Vafeidis ATDrake NA2005A two-step method for estimating the extent of burnt areas with the use of coarse-resolution data.International Journal of Remote Sensing261124412459doi:10.1080/01431160500034102

Verstraete MMPinty B1996Designing optimal spectral indices for remote sensing applications.IEEE Transactions on Geoscience and Remote Sensing34512541265doi:10.1109/36.536541

van Wagtendonk JWRoot RRKey CH2004Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity.Remote Sensing of Environment92397408doi:10.1016/J.RSE.2003.12.015

Wessman CABateson CABenning TL1997Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis.Ecological Applications72493511doi:10.1890/1051-0761(1997)007[0493:DFAGPI]2.0.CO;2

Wimberly MCReilly MJ2007Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery.Remote Sensing of Environment108189197doi:10.1016/J.RSE.2006.03.019

Export Citation Cited By (32)