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Abstract. Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect
surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition,

nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine
the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and
N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns
from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the

distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive
ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No
distinct biomass thresholdwas found, althoughwithin the 99th percentile of the distribution fire size increasedwith greater

than 125 g m�2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the
value of 125 g m�2 of fine fuel for spread of fires.
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Introduction

The frequency and size of fires in desert regions of California is
positively related to precipitation (Brooks and Matchett 2006).
This relationship is especially strong at lower elevations where

sparse vegetation is typically insufficient to carry fire except
following periods of high precipitation, when annual plants fill
the spaces between perennial plants creating continuous fuel-
beds that promote fire spread (Brooks 1999; Brooks and

Minnich 2006). Productivity of non-native annual grasses can
be especially prolific in response to high precipitation
(Gutiérrez 1992; Rao and Allen 2010). Their biomass tends to

persist longer as standing fuel than does that of annual forbs that
tend to disarticulate and disperse at a faster rate (Brooks 1999).
As a result, non-native annual grasses are often considered to

be transformers of desert ecosystems through their effects
on fuelbeds, fire regimes and other ecosystem properties

(D’Antonio and Vitousek 1992; Brooks et al. 2004; Brooks and

Minnich 2006; Steers and Allen 2011; Balch et al. 2013).
Although it is clear that non-native annual grasses are

associated with increased fire risk, it remains unknown how

much biomass is required to allow fire to spread. This has not
been evaluated largely because identification of annual plant
fuel load thresholds necessary for fire spread in deserts requires
data on biomass that is seldom known before a fire burns.

Precipitation is used as a surrogate for fine fuel biomass in
models that correlate fire with winter precipitation (e.g. Brooks
and Matchett 2006). Currently, biomass thresholds can only be

estimated from general fuel models typically developed for non-
desert ecosystems (e.g. Anderson 1982). For instance, manage-
ment burns are not recommended unless there is at least

100 g m�2 of fine fuel in grasslands, but threshold values are
not quantified for wildfires. Direct quantification of thresholds

CSIRO PUBLISHING

International Journal of Wildland Fire 2015, 24, 48–58

http://dx.doi.org/10.1071/WF13152

Journal compilation � IAWF 2015 www.publish.csiro.au/journals/ijwf



is necessary to predict when and where fires may be most likely
to occur and to develop fire hazard assessments for land
managers.

Because nitrogen (N) deposition also contributes to fuel
productivity (Rao and Allen 2010; Rao et al. 2010) there is a
need to evaluate how much N deposition from atmospheric

pollution contributes to fire size above and beyond the influence
of precipitation. This is important because of recent and pro-
jected future increases of N deposition in the California deserts

(Fenn et al. 2010; Pardo et al. 2011) and the potential need to
manage point and non-point sources of N pollution from a fire
management standpoint. N deposition levels in California
deserts can be as high as 16 kg N ha�1 year�1 downwind of

populous coastal cities (Fenn et al. 2010). Most occurs as dry
deposition in oxidised form from combustion, although reduced
N forms are also deposited in the desert (Fenn et al. 2003a;

Fenn et al. 2003b). Low background levels of soil N in deserts
limit plant growth even with increased precipitation (Rao
and Allen 2010), and when amounts of N are increased non-

native species often utilise it more readily than native species
(Brooks 2003; Allen et al. 2009). In contrast to precipitation, the
link between N deposition and fire size is not well established

(but see Rao and Allen 2010; Rao et al. 2010). The threshold,
or critical load, for N deposition that promotes sufficient fine
fuel to increase fire risk based on standard fuel models was
modelled as 3 kgN ha�1 year�1, with an upper stabilisation level

of 9 kg N ha�1 year�1, at which precipitation becomes the main
control (Rao et al. 2010). A more ecoregion-specific empirical
threshold could be determined for the California desert by

examining biomass values co-occurring with historic fire data-
sets in relation to N deposition and precipitation.

Given the need to determine thresholds of N deposition and

biomass production for fire management purposes, the primary
objectives of this study are to:

1. Compare the ability of N deposition and precipitation with
that of herbaceous fine fuel biomass (modelled) to determine
fire size.

2. Determine the relationship between herbaceous fuel biomass
and fire size, focusing on the identification of a biomass
threshold.

3. Describe the range of N deposition and precipitation values

necessary to produce the biomass threshold.

These objectives were met by examining a 28-year fire

record for low-elevation desert scrub across California and
coupling the fire record with modelled precipitation, N deposi-
tion and biomass information.

Methods

Study area

The study area was 6 209 206 ha in size (Fig. 1), and included
portions of the Mojave and Colorado Deserts within California
at elevations less than 1000 m. We limited the analysis to desert
wash, desert scrub and desert succulent scrub California Gap

Analysis Program landcover types (Davis et al. 1998). These
lower-elevation vegetation types contain native perennial fuels
that are too sparse to carry fire without non-native annual plants

filling the interspaces between them and have historically been

subject to lower fire frequency (Brooks and Matchett 2006;

Balch et al. 2013). Because the exact fire perimeters were
unknown, we used the point of origin of each fire to determine if
it occurred below 1000 m. We excluded fires with a point of

origin in riparian, agricultural or other developed areas, which
were especially prevalent along the south-west and south-east
margins of the study region.

Data sources

Fire data

Fire data were obtained from the US Geological Survey

Wildfire database (US DOI 2009). The database included the
federal fire history reports from 1980 to 2008. Data were
processed to remove duplicate fires, fires with invalid dates

and fires with a point of origin outside the study area. We
selected only fires greater than 0.4 ha in size because smaller fire
areas represent events that did not result in fire spread (e.g.

roadside automobile fires). Because the primary intent of this
study was to examine the relationship between biomass growth
and fire size, we only used fires that occurred during the summer
fire season, defined as 1 May–31 October. Winter fires were

excluded because of uncertainty regarding when the biomass
fuelling the fire was generated, which resulted in uncertainty
regarding whether summer precipitation, prior year winter
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Fig. 1. Study area, limited to low-elevation desert scrub, is indicated by the

grey hatched area. Each fire used in the analysis is represented by a black dot.
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precipitation or current year winter precipitation should be used

to model fine fuel biomass. Of the 548 543 national records,
582 were used for this study with temporal period of May 1980–
September 2008 from fires located on both private and public

lands. Cumulative and frequency distributions of fire size are
presented in Fig. 2.

The fire data were point based with a total area burned

associated with each point. We converted each fire data point
into a circle with the same area as the reported size, with the
centre of the circle being the point of origin of the fire. No

attempt was made to verify the accuracy of the locations of the
fires in the fire database, but the database in this study is
generally the same as the database used in previous analyses
(Brooks andMatchett 2006) with the addition of data from 2005

to 2008. Any inaccuracies in the fire database would affect the
results to a greater or lesser degree depending on fire size and the
homogeneity or heterogeneity of land cover within each quarter

section-based location, with possible accuracy problems having
a greater effect for smaller fires and less so for larger fires. For
each fire we calculated the distance to the nearest road from the

point of origin, area-weighted precipitation in the year of the fire
and the year preceding the fire, and area-weighted total annual N
deposition within the fire area during 2002.

Distance to road

The distance to a road has been shown to have significant
explanatory power for fire size due to its correlation with human
influence, particularly in the urban–wildland interface (Syphard

et al. 2007; Holden et al. 2009; Brunelle et al. 2010). Because of
the importance of human influence on fire size, we included
distance to road (roadDist) in our models as a controlling

variable to enable us to detect the potentially smaller effects
of precipitation and N deposition. We defined roadDist as the

distance from the point of fire origin, in metres, to the nearest

major road (annual average daily traffic .8000 vehicles) or
national highway (RITA 2012).

Precipitation

We utilised PRISM weather data at a 4-km grid resolution to
calculate the area-weighted seasonal precipitation for each fire
(www.prism.oregonstate.edu, verified 10 August 2010). The
winter season was defined as 1 November–30 April, and

summer as 1 May–31 October. Four precipitation variables
were developed: precipitation during the first full winter before
the fire (pptWin1), during the second full winter before the fire

(pptWin2), during the first full summer before the fire (pptSmr1)
and during the second full summer before the fire (pptSmr2).
Because the fires were limited to those occurring during the

summer season, pptSmr1 is actually the summer precipitation
that occurred the year before the fire. Summer precipitation
from the year of the fire was not included because most rainfall

occurs middle to late summer (Hereford et al. 2006) whereas
most fires occur in the early to middle summer (Brooks and
Esque 2002), before the onset of significant rainfall. We
included precipitation from 2 years before the fire in our analysis

because this has been correlated with fire frequency in previous
studies (Rogers and Vint 1987; Margolis and Balmat 2009).

Nitrogen deposition

The US Environmental Protection Agency’s Community
Multiscale Air Quality (CMAQ), a photochemical grid model,

was used to model N deposition (Ndep) over the study area.
CMAQ uses meteorological and emissions inputs to model the
atmospheric photochemistry, transport and deposition of pollu-

tants. Meteorological data were produced by operating the
National Center for Atmospheric Research (NCAR)/Penn State
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MesoscaleModel (MM5) for the year 2002 on a 4-km (2.5-mile)
resolution grid. Emissions inventories were derived from previ-
ous oxidised and reduced aerosol N, ozone and particulate

matter modelling studies for California (Tonnesen et al. 2003)
and for the western US (Tonnesen et al. 2002). A full description
of the model can be found in Tonnesen et al. (2007), and the

dataset and metadata are available at http://ccb.ucr.edu/biocom-
plexityfiles/data/California%202002.zip (verified 14 August
2013). N deposition values used in our analyses are a mix of

4- and 36-km resolution model results (Fig. 1), with higher-
resolutionmodelling in the LosAngeles airshed (Tonnesen et al.
2007; Fenn et al. 2010). There are 138 points in the low-
resolution area, and because this is also the low-deposition area,

we believe that the resolution is sufficient for our purposes. N
deposition was area-weighted within each of the scaled fire
circles to give a mean deposition value for the area burned for

each fire event. Although our fire record dates back to 1980, we
used the earliest available 2002CMAQdata to provide a relative
ranking of the N deposition that would be observed over our

study area. CMAQ N deposition modelled data are correlated
with measurements from the National Atmospheric Deposition
Program (NADP) (Clark et al. 2013), but this has relatively few

measurement sites in the west both at present and historically.
Further, dry deposition, which forms most of the deposition in
arid climates, is not measured by NADP and must be inferred.
To determine precise critical N deposition loads, deposition data

from earlier in the fire period would be preferred but were not
available.

Biomass

We calculated fine fuel biomass for each fire using pptWin1
and Ndep. A regression to calculate biomass from winter

precipitation and N deposition was developed using the Day-
Cent model and 25 years of modelled biomass for four sites in
Joshua Tree National Park (JTNP). The DayCent model is a

biogeochemical model that predicts annual production based on
inputs of climate, soil profile and plant-specific properties (e.g.
percentage tissue carbon (C), N and lignin). The calibration and

validation of biomass modelled for the four JTNP sites are
described in detail in Rao et al. (2010). Briefly, two model
parameterisationswere developed; one for nativewinter annuals

mixed with the exotic annual grasses Schismus barbatus and
S. arabicus, and one for native winter annuals mixed with the
exotic annual grass Bromus rubens. These exotic annual grasses
occur throughout the study area, depending on precipitation

and elevation. The model was parameterised for one site and
validated with a second site using 5 years of field data that
spanned some of the driest and wettest years on record (2003–

2007). The parameterised models were then run for 25 years
(1983–2008) to generate predicted biomass based on the pre-
cipitation record from four nearby weather stations, two sites

with representative Schismus spp. communities and two sites
with representative B. rubens communities. The biomass esti-
mates were then combined and a single regression performed to
develop a simplified ‘winter annual’ biomass model based on

precipitation and N deposition.
As discussed in Rao et al. (2010), the DayCent model over-

predicts biomass production in very dry years when there is

insufficient precipitation to result in germination (,2 mm).

Therefore, any modelled biomass amounts from years with
less than 2 mm of precipitation were set to zero before
developing the simple regression model. The resultant model

was: biomasspred¼ 50.9(pptWin1)1/3þ 23.6(Ndep)1/3� 96.6
(n¼ 98, R2¼ 0.70). The regression model was validated using
28 data points from 5 years of actual biomass data from the four

sites at JTNP as well as several other sites outside the Park.
Although the validation data were limited to data collected at or
near JTNP, the biomass was collected over a period of 5 years

that were some of the driest and wettest years on record, with a
range of 48 to 440 mm annual precipitation, which effectively
brackets the range of precipitation from our study area based on
30-year normal PRISM precipitation data (48–341 mm annual

precipitation with a mean of 124� 33 mm). In addition, the
model was developed at the ecotone between the Mojave and
Colorado deserts of California – the same two desert regions that

define the study area in our analysis – and encompassed the
range of elevations, temperature regimes and seasonality of
precipitation that would affect herbaceous plant growth in the

study area (Hereford et al. 2006).
The validation results indicated that the model performed

well at low biomass (intercept near zero), but at high actual

biomass, modelled biomass was under-predicted (bio-
masspred*1.396–3.840, R2¼ 0.54). As a result, a correction
factor was applied to the modelled regression to adjust the slope
of the model. The final corrected validation model had a slope

of one and an intercept of zero. Using the corrected regression
equation, annual winter biomass produced 1 year before the fire
(bioWin1) was calculated using themodelled 2002N deposition

values for each fire and the winter precipitation 1 year before the
fire (pptWin1). Any negative calculated biomass amounts were
treated as zero.

Statistical analyses

The distribution of wildfire sizes used in this study – and of

wildfires in general – departs strongly from normal, with smaller
fires muchmore frequent than larger ones (Fig. 2). This presents
a challenge when using parametric multiple regression models

that attempt to quantify how the expected mean changes in
response to some set of predictor variables. For example, the
meanmay be significantly influenced by a small number of very

large fires (i.e. outliers), and it is difficult for such models to
meet their parametric assumptions, even when severely trans-
forming the response using, for example, a log-scale transfor-
mation. Outliers could be trimmed before analysis; however, in

our dataset this likely removes from consideration those fires
having the greatest ecological and economic effects because
they cumulatively burn amuch greater area than all smaller fires

combined. In order to get a more complete assessment of how
fire size responded to our predictor variables of interest, we used
a modelling technique called quantile regression to assess the

relationships between fire size distribution and the precipitation,
N deposition and biomass variables. Quantile regression
(Koenker and Bassett 1978) estimates the effects of explanatory
variables for different portions of the distribution of a response

variable, rather than just modelling the mean response, and has
been shown to be a useful technique for analysing a variety of
ecological datasets (Cade and Noon 2003), including identify-

ing relationships between wildfire size and climate variables
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(Slocum et al. 2010). A series of modelling functions is esti-
mated at different levels of t, with t representing the fractions

of expected response values (e.g. fire size) below the estimated
function and 1� t, the expected values above it, conditional
upon a set of predictor variables (e.g. N deposition, precipita-
tion, biomass). For example, a t¼ 0.5 represents the expected

median of a distribution, so quantile regression can model how
themedian changes in response to differing values of the various
predictor variables. Functions can be estimated for a range of

t between zero and one, resulting in multiple rates of change
(slopes) between an explanatory variable and the response
variable, therefore providing amore complete picture of how the

distribution of the response is changing given changes in a set of
predictor variables. Quantile regression is a semi-parametric
modelling technique because no parametric distributional form
is assumed for the random error part of the model, whereas a

parametric form is assumed for the deterministic part (Cade and
Noon 2003). Graphical visualisations of two model variables –
fire size and distance to road – suggested that they should be

log-transformed before analysis tomeet this assumption. For our
analyses, we used the ‘quantreg’ package (Koenker 2010) for
R statistical software system (R Development Team 2010) to

run quantile regression models.
In addition to modelling a constant, linear (at least on a log

scale) response of fire sizes to fine fuel biomass at various levels

of t, we were interested in finding evidence of a distinct
threshold in biomass – a level of fine fuel biomass below which
there is little change in fire size distribution patterns and above
which there is a dramatic change. To evaluate this possibility

with quantile regression, we ranmodels having a single ‘knot’ at
various levels of winter biomass, specifically from 25 to
150 g m�2 in 25 g m�2 increments. This range in knots brackets

the range of fine fuel thresholds necessary for carrying fire
reported in the grassland literature (Anderson 1982; Scifres and
Hamilton 1993; Fenn et al. 2003a). Because knot models can

only be run at discrete levels chosen a priori, we also ran amodel
with winter biomass as a second-order polynomial to evaluate if
a model without a specified threshold would fit the data better
than the models with and without the knots.

Numerous unique models can be formed using various
combinations of predictor variables in order to test which ones
best explain the distribution of fire sizes; however, it is not

appropriate to combine certain predictor variables in the same
model. For example, winter biomass, winter precipitation and N

deposition should not be combined in the same model since
winter biomass is simply derived from winter precipitation and
N deposition via a predictive model. Likewise, including winter
biomass knotted at 25 and 150 g m�2 in the same model would

not make sense because the model would no longer be identify-
ing a single threshold. We ultimately specified nine distinct
models (Table 1) to address the key objectives of our analysis,

primarily to determine (1) if there is any benefit in using fine fuel
biomass (modelled from precipitation and N deposition) v.

simply using precipitation for predicting fire size, and (2) if

there is evidence of a threshold response in fire size to fine fuel
biomass. The other variables, such as distance to road and
summer precipitation, which may have explanatory power but
are not central to our analytical objectives, were included in all

models. The nine models in the set were compared to each other
using an information theoretic approach, specifically by calcu-
lating Akaike’s Information Criteria (AIC) values. In standard

multiple regression, each model has a single AIC value, but in
quantile regression anAIC value can be calculated for each level
of t for each model. The trends in AIC values across t levels

between models can be used to assess which models are best
predicting changes in fire size distribution.

For the N deposition threshold analysis, the quantile regres-

sion results were used to determine if a biomass threshold
occurred fromwhich anN deposition threshold could be derived.
We also evaluated the N deposition threshold by examining the
relationship betweenNdeposition and area burned.Weweighted

each burn under a givenN deposition level by the total study area
under a given N deposition interval because a majority of the
study area was under low to moderate levels of N deposition,

with only a few regions experiencing high N deposition (Fig. 1).
N deposition intervals were analysed every 1 kg N ha�1. The
area-weighted burned valuewas compared to a null hypothesis of

equal weighted area burned using a chi-square test.

Results

Model comparison

No one model performed best across the entire range of t values
(Table 2). Model 2, which contained modelled herbaceous

Table 1. List of models used in the quantile regressions

Model 1 uses precipitation andN deposition as the primary variables;Model 2 uses biomass and prior precipitation as the

primary variables; Models 3–8 evaluate biomass thresholds at six different levels; Model 9 evaluates a second-degree

polynomial on winter biomass

Model Variables

1 pptWin1 þ pptWin2 þ pptSmr1 þ pptSmr2 þ N dep þ logRoadDist

2 bioWin1 þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist

3 (bioWin1, knot¼ 25) þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist

4 (bioWin1, knot¼ 50) þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist

5 (bioWin1, knot¼ 75) þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist

6 (bioWin1, knot¼ 100) þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist

7 (bioWin1, knot¼ 125) þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist

8 (bioWin1, knot¼ 150) þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist

9 (bioWin1, polynomial, degree¼ 2) þ pptWin2 þ pptSmr1 þ pptSmr2 þ logRoadDist
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biomass in place of winter precipitation and N deposition,
generally had the lowest AIC values for t levels at or below 0.6,

but most AIC�AICmin values were less than 3, indicating that
all the models were essentially equivalent. Model 1, which
contained the combination of precipitation and N deposition,

was a significantly better predictor of fire size distribution at t
values between 0.70 and 0.90. The coefficients for winter pre-
cipitation in the year before the fire and 2 years before the fire for

Model 1 had a quadratic response, with the greatest effect of
winter precipitation occurring at 0.50,t, 0.99 (Fig. 3). The
overlapping peaks of the two winter precipitation coefficients
indicate a strongly additive effect of 2 years of high winter

precipitation on intermediate percentiles of fire size (Fig. 3),
although some amount of additiveness affects most of the fire
size distribution (Fig. 4).

There does not appear to be an effect of summer precipita-
tion due to the large amount of uncertainty in the summer

precipitation coefficients, as indicated by the bootstrapped
95% confidence intervals that bracket the zero line throughout

the entire t range (Fig. 3). There was generally no influence of
N deposition on fire size distribution, except for a slight negative
relationship at t¼ 0.80. There was a positive, gradually increas-

ing effect of distance to road across the fire size distribution,
indicating that the infrequent larger fires were the farthest from
roads.

The best predictor of the 99th percentile of the fire size
distribution was Model 7, which had a ‘knot’ at 125 g m�2 of
fine winter biomass. The shape of the relationship between
winter biomass and fire size at t¼ 0.99 indicates the effect

of winter biomass is level, or decreases slightly up to the knot,
after which there is a strong, positive relationship between
annual winter biomass and the fire size representing the largest

1% of fires, conditional upon values of the other predictor
variables (Fig. 5).

Table 2. AIC – minimum AIC values for each model evaluated using quantile regression

A zero indicates that the given model performed best at that level of t

t Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

0.01 2.0562 0.0000 2.0562 2.0562 2.0562 2.0562 2.0562 2.0562 2.0562

0.10 2.0562 0.0000 2.0562 2.0562 2.0562 2.0534 2.0562 2.0562 2.0562

0.20 1.1808 0.0054 1.9413 2.0607 2.0581 1.5925 1.6498 0.0000 1.6771

0.30 2.2232 0.0000 1.8583 1.9851 2.0524 1.2448 0.9910 1.3001 1.9048

0.40 1.7123 0.0000 1.2350 2.0382 1.5493 1.9398 1.6326 1.8016 2.0092

0.50 4.1172 0.0000 0.2741 1.0881 0.7404 1.5840 1.8258 1.8169 1.2669

0.60 4.2027 0.5040 0.0000 0.9102 1.0412 1.7022 2.1000 2.0421 1.2139

0.70 0.0000 6.0310 5.6885 6.9044 7.7100 7.9439 7.7942 8.0826 7.6304

0.80 0.0000 12.2848 14.1570 14.0836 14.2982 13.7390 13.0910 12.4516 13.9914

0.90 0.0000 14.7206 14.1561 16.4869 15.6373 15.8498 15.9589 14.4433 14.9483

0.99 13.1199 17.8934 16.4493 15.7813 11.6749 8.4826 0.0000 5.8753 11.5156

Intercept Winter precipitation 1 Winter precipitation 2 Summer precipitation 1

Summer precipitation 2 Nitrogen deposition Road distance
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N deposition threshold

Wewere not able to discern a fine fuel threshold for the majority
of fires in our dataset, and as such could not derive an N depo-
sition threshold for most fires based on biomass. At the 99th

percentile of the fire size distribution, there was a biomass
threshold of 125 g m�2, although no N deposition threshold at
this percentile was apparent. In addition, because precipitation

was the predominant driver of biomass (Fig. 6), it was difficult to
derive a statisticallymeaningful N deposition threshold from the
biomass threshold. We also evaluated the relationship between
N deposition and area burned using a weighted area calculation

of area burned. Subtracting the actual weighted area burned at
each N deposition interval from the expected weighted area
burned assuming equal probability of burning at each interval,

gave a mean difference close to zero (Fig. 7; mean¼ 0.013).
A chi-square analysis indicated that overall the actual differ-
ences were not significantly different from the expectation of an

equal proportion of area burned at each weighted N deposition
level (P¼ 0.45). At both 7 and 14 kg N ha�1 the expected
weighted area burned was greater than the 95% confidence
interval, but not significantly so.

Discussion

Fine fuel biomass and fire size distribution

The quantile regression results indicated that under most levels
of t, there was no real difference between the models containing
precipitation and biomass and those containing the combination

of precipitation and N deposition for the prediction of fire size
distribution in our study area (Table 2). This result is likely due
to the fact that winter annual biomass is primarily driven by

precipitation (Noy-Meir 1973; Beatley 1974), with N deposition
having a much smaller effect (Fig. 6; Rao and Allen 2010),
especially given the small range of N deposition values across
the study area (Fig. 1). Additionally, in most cases the knot

models did not perform better than those without a knot, and as
such we were unable to identify a fine fuel threshold for the
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majority (t, 0.99) of fires. There are several possible reasons as
to why biomass was not a stronger predictor of fire size distri-

bution in this study. One likely explanation is that the biomass
model was too simplistic. The biomass model used only winter
precipitation and N deposition, and was created using data from

the DayCent model (Rao et al. 2010). The DayCent model could
not be used to estimate biomass for each fire directly because
there were insufficient data, namely soil profile information, to

run the model for each fire location. There were also not enough
field samples of biomass to develop a robust empirical biomass
model, which is why we relied on modelled data. More research

is needed into the development of robust fine fuel biomass
models using field observations.

Other possible explanations for why biomass did not have
superior predictive performance compared to precipitation and

N deposition are that the dataset was not sufficiently large, or
the data sufficiently precise or accurate. Additionally, the spatial
and temporal variability may have been too large, making it

difficult to tease out the drivers behind variability in fire size.
We were only able to include one controlling variable, distance
from road, in our analysis. Numerous other variables (such as

fuel moisture, relative humidity, wind speed and ground slope)
can have an important influence on fire spread (Keeley and
Fotheringham 2001; Crimmins and Comrie 2004), and other
controlling variablesmay have helped in reducing the variability

and increasing the chance of detecting the effect of biomass.
Additional information, particularly fuel moisture content, also
would have enabled different types of analyses such as structural

equation modelling to be conducted.
Although predicted biomass was not found to be a better

determinant of fire size distribution, we did find that winter

precipitation strongly influenced the distribution (Fig. 3), with
2 years of high winter precipitation resulting in a substantial
increase in the size of the largest fires (Fig. 4). Several studies

support the link between increased precipitation and fire size in
low-elevation deserts (Brown and Minnich 1986; Rogers and
Vint 1987; Crimmins and Comrie 2004; Brooks and Matchett

2006). Several other studies from the arid south-western US
have shown a link between a period of drought and increased fire
size, possibly with increased precipitation 2 years before the

fire, but those patterns are driven by higher-elevation, fire-prone
shrubland, woodland and forest landscapes (Swetnam and
Betancourt 1998; Westerling et al. 2003; Littell et al. 2009).

Drought does not appear to result in a distribution pattern that
contains large fires, likely due to the timing of precipitation in
the Mojave and Colorado deserts of California, which primarily
occurs between September and May. Because dry weather

conditions are common during the summer, the limiting factor
for fire is usually the amount and connectivity of fine fuels that
were generated during the winter growing season, not fuel

moisture content (Brooks and Minnich 2006; Krawchuk and
Moritz 2011). The cover of non-native grasses relative to that of
native forbs is also important since non-native annual grass fuels

are more persistent throughout the summer, whereas native
forbs disarticulate more quickly (Brooks 1999). Thus, our data
support the hypothesis that 2 years of above-average winter

precipitation generate significant fine fuel biomass because the
first wet winter will result in both higher production of annuals
and the addition of large numbers of seeds to the soil, and a
second wet winter and increased seed reserves will result in

production of sufficient annuals to sustain fire (McLaughlin and
Bowers 1982). Additional studies are needed to determine both
the fine fuel threshold needed to carry small to intermediate-

sized fires in this ecosystem, as well as the conditions necessary
to generate sufficient biomass.

Our analysis revealed a fine fuel threshold of 125 g m�2

influencing the fire size at the 99th percentile of the fire size
distribution. Before the model knot at 125 g m�2, the fire size of
the 99th percentile was relatively flat, but after the knot the fire
size increased with increasing biomass production (Fig. 5). This

biomass threshold is at the higher end of the range of fine fuel
thresholds of 70–150 gm�2 reported as being able to carry fire in
grass-dominated systems (Anderson 1982; Scifres andHamilton

1993; Fenn et al. 2003a). For reasons already discussed, no
biomass threshold appeared to influence most of the fire size
distribution, although the change in fire size at the 99th percen-

tile of the fire size distribution when fine fuel loads exceeded
125 g m�2 does support the hypothesis that annual biomass
production above a certain threshold creates a continuous fine

fuel load that facilitates fire spread and is necessary for the
occurrence of large fires in a low-elevation desert ecosystem
that would otherwise be fuel limited (Brown andMinnich 1986;
Brooks and Matchett 2006; Meyn et al. 2007).

One caveat to the biomass threshold estimate is that the
biomass data are calculated for peak biomass or the amount of
total green biomass (dry mass) at the end of the growing season.

Thus, these are overestimates of the biomass present at the time
of the fire unless the fire occurred in the late spring, since some
of the dry biomass disarticulates during the dry season, espe-

cially if forbs rather than grasses are dominant. Additionally,
these data do not take into consideration the biomass that may
have been generated as a result of summer precipitation in the
same year as the fire. Care must also be taken when interpreting
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the results at the 99th percentile, as there is substantial uncer-
tainty about this estimate, which can be seen in the large 95%
confidence intervals in Fig. 5. However, despite these limita-

tions and those of the dataset as previously described, the
biomass threshold found for large fires in our dataset falls within
the range of thresholds reported previously in the literature for

fine fuels, lending credence to the use of a fine fuel threshold of
,100 g m�2 in fire planning and risk assessment in desert scrub
ecosystems.

Thresholds of N deposition

Based on the best-performing model for intermediate-sized

fires,Model 1, there was no strong effect of N depositionwhen it
was included as a distinct predictor variable (Fig. 3). The fact
that larger fires were associated with lower N deposition levels

may be related to remoteness, which limits the level and speed of
firefighting activities. This hypothesis is supported by the pos-
itive relationship between distance to road and fire size (Fig. 3)

and a weakly negative correlation between distance to road and
N deposition (r¼�0.43). Conversely, because areas of high N
deposition are generally closer to urban and agricultural areas,
increased firefighting capabilities in these areas may have

somewhat limited fire spread, thus further limiting our ability to
detect an N deposition effect. Additionally, even areas with low
N deposition are capable of producing high fine fuel loads when

precipitation is sufficient.
Analysis of the area burned under each N deposition level in

our study area indicated that under 7 and 14 kg ha�1 year�1 of N

deposition more area burned than would be expected, although
these results were not statistically significant (Fig. 7). Studies
evaluating the critical loads of N deposition in desert scrub have
identified 3.2–9.3 kg N ha�1 year�1 as being sufficient to cause

changes in the community composition or increase biomass
above a 100 g m�2 fine fuel threshold (Fenn et al. in press; Fenn
et al. 2010; Rao et al. 2010). Whether a particular area falls

within that range is dependent upon both its soils and precipita-
tion regime (Rao et al. 2010).

In addition to the limitations of our dataset previously

described, our inability to discern anN threshold for themajority
of fires is likely related to the fact that most of the variation in
annual biomass productivity is driven by inter-annual precipita-

tion rather than differences in the spatial variation in N deposi-
tion (Fig. 6). Although field studies have demonstrated increases
in annual biomass with N fertilisation in desert scrub (Gutiérrez
1992; Brooks 2003; Rao and Allen 2010), the reality is that the

difference in biomass production between low and high N
deposition is a very small range to detect within the linear trend
of fire size in our dataset given that precipitation is the dominant

forcing factor. However, because N additions can promote
annual biomass production overall and non-native invasive
grasses in particular (Brooks 2003; DeFalco et al. 2003; Salo

et al. 2005; Rao and Allen 2010), it remains important to
evaluate N deposition in relation to fire size and fire risk. This
is particularly important in areas of known or suspected elevated
N deposition given that N deposition could be sufficient to

increase the annual biomass produced to above the fire-carrying
threshold compared to background N deposition levels (Fig. 6).
Additional studies in regions with more widespread increased

levels of N deposition may also improve the ability to detect the

influence of N deposition on fire size and assist in the develop-
ment of an N deposition threshold.

Management implications

In the future, the arid regions of southern California will be
under increasing pressure from climate change, which is pre-

dicted to increase temperatures and the severity of extreme
weather events, particularly drought-like La Niña conditions
(Beuhler 2003; Weiss and Overpeck 2005; Seager et al. 2007).

Because of the link between fine fuel production and fire size in
low-elevation desert scrub, this change in climate will affect fire
risk. The ability to assess fire risk before the start of the summer
fire season can assist not only with budgeting and fire season

readiness, but also with protection of threatened and endangered
species. Specifically, this region is home to the desert tortoise
(Gopherus agassizii (Cooper)), a nationally threatened species

that is harmed by wildfire through direct mortality and loss of
habitat (Brooks and Esque 2002; Esque et al. 2003).

The results from our study indicate that the fire size distribu-

tion in our study area can be predicted using the precipitation
received during that winter rainy season and the prior year’s
winter precipitation, and that not much additional predictive

power is gained by using annual plant biomass modelled from
winter precipitation and N deposition. Precipitation data are
generally readily available to land managers, with no need to
survey biomass. However, the fire size representing the 99th

percentile of the fire size distribution did have a relationship
with predicted biomass, and there did appear to be a threshold of
125 g m�2, suggesting that, in order to be prepared for the

largest, most ecologically and economically destructive fires, it
is prudent that land managers sample peak annual biomass.
Since assessment of peak biomass is a relatively simple measure

and one that is often conducted for other land management
purposes, having a fine fuel threshold associated with increased
fire risk can assist land managers in deciding where to put
limited resources. Although our study did not identify a single

N deposition threshold, because of the demonstrated association
between winter annual biomass production and N fertilisation
(Brooks 2003; Rao and Allen 2010), care should be taken when

estimating fire risk in high-deposition areas using precipitation
alone, as fire risk will likely be underestimated (Rao et al. 2010).
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