
Propagation probability and spread rates of self-sustained
smouldering fires under controlled moisture content and
bulk density conditions

Nuria Prat-GuitartA,E,Guillermo ReinB, Rory M. HaddenC, Claire M. BelcherD

and Jon M. YearsleyA

ASchool of Biology and Environmental Science, Earth Institute, University College Dublin,

Dublin D4, Republic of Ireland.
BDepartment of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.
CSchool of Engineering, University of Edinburgh, The King’s Buildings, Mayfield Road,

Edinburgh EH9 3JL, UK.
DwildFIRE Lab, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK.
ECorresponding author. Email: prat.nur@gmail.com

Abstract. The consumption of large areas of peat during wildfires is due to self-sustained smouldering fronts that can
remain active for weeks. We studied the effect of peat moisture content and bulk density on the horizontal propagation of

smouldering fire in laboratory-scale experiments.We usedmilled peat withmoisture contents between 25 and 250% (mass
of water per mass of dry peat) and bulk densities between 50 and 150 kg m�3. An infrared camera monitored ignition,
spread and extinction of each smouldering combustion front. Peats with a bulk density below 75 kg m�3 and a moisture

content below 150% self-sustained smouldering propagation for more than 12 cm. Peat with a bulk density of 150 kg m�3

could self-sustain smouldering propagation up to a critical moisture content of 115%. A linear model estimated that
increasing bothmoisture content and bulk density significantly reduced themedian fire spread rate (which ranged between

1 and 5 cm h�1). Moisture content had a stronger effect size on the spread rate than bulk density. However, the effect of
bulk density on spread rate depends upon the moisture content, with the largest effect of bulk density at low moisture
contents.
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Introduction

Smouldering is an incomplete form of combustion affecting
organic materials such as the peat stored in peatlands and forest

soils (Rein 2013). The propagation of smouldering fires is
known to be very slow compared with flaming fires, moving at
few centimetres per hour (Wein 1983; Frandsen 1991). The

consumption of large areas of peat is often caused by self-
sustained smouldering fires, which remain active and slowly
propagating for weeks or months (Rein 2013).

During a peat fire, the carbon stored in the ground is released
to the atmosphere. Incomplete smouldering combustion in peat
produces a higher proportion of carbon emissions (e.g. CO,
CH4) than flaming fires in vegetation (Hadden 2011). These

gases contribute significantly to global emissions of greenhouse
gases (Turetsky et al. 2015). Smouldering peat fires also affect
the roots of vegetation close to the surface, often causing lethal

plant damage and habitat losses (Miyanishi and Johnson 2002;
Page et al. 2002; Davies et al. 2013). The landscape after a peat
fire is often heterogeneous, as peat is consumed in irregular

patches (Shetler et al. 2008). In the burnt areas, deep layers of
dense peat become the new surface, with a different constitution
and properties (Prat-Guitart et al. 2011). These post-burn

surfaces are often opportunities for colonising species and have
the potential to change biodiversity (Benscoter and Vitt 2008).

Factors driving smouldering fire ignition

The ignition of a smouldering fire in peat is often caused by a
heat source near the surface, such as a lighting strike, adjacent

flaming vegetation (Rein 2013) or burning pine cones (Kreye
et al. 2013). The start of a smouldering fire is controlled by the
properties of the ignition source (intensity and duration), peat
conditions (primarily moisture content, bulk density and

mineral content) and oxygen availability (Frandsen 1987;
Ohlemiller 2002; Hadden et al. 2013; Huang and Rein 2014).
Of these, peat moisture content is the main factor limiting the

ignition of peat (Van Wagner 1972; Frandsen 1987, 1991).
Water in peat acts as a heat sink, requiring a large amount
of energy to evaporate the water before the peat reaches
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temperatures at which the pyrolysis process begins (Rein 2013).
The probability of peat ignition and initial horizontal propa-
gation of at least 10 cm from an ignition source has been

estimated in previous studies (Frandsen 1997; Lawson et al.

1997; Reardon et al. 2007). When the moisture content (MC) of
the peat is between 110 and 200% (gravimetric moisture

content, mass of water per mass of dry peat expressed as a
percentage), there is a 50% probability of starting a smouldering
peat fire (Frandsen 1987; Frandsen 1997; Reardon et al. 2007;

Rein et al. 2008). Frandsen (1997) predicted the probability of
ignition and early horizontal propagation as a function of MC

(%), mineral content (%) and bulk density (kg m�3). Reardon
et al. (2007), however, predicted the ignition and early propa-

gation using only moisture and mineral content, suggesting that
bulk density was implicitly included in the quantification of the
other two peat properties.

Self-sustained smouldering propagation

Once ignited, a smouldering fire propagates by drying and
igniting the fuel ahead of the smouldering front (Frandsen 1997;

Huang et al. 2015). In smouldering combustion, peat particles
undergo endothermic pyrolysis, forming char, also known as
regime I, followed by exothermic oxidation reactions where

char is converted to ash, regime II (Hadden et al. 2013; Huang
et al. 2015). The energy released during the exothermal oxida-
tions is transferred to the surrounding environment, some being
radiated to the atmosphere and some conducted to the peat

particles ahead of the smouldering front. If the combustion of
peat particles in the smouldering front produces sufficient
energy to overcome the heat losses to the surroundings, the

smouldering front spreads away from the ignition point and
becomes an independent self-sustained front (Ohlemiller 1985).
A smouldering front can then propagate into the peat both

vertically and horizontally. However, it is the front propagating
horizontally that is primarily responsible for the large areas of
peat consumed, as vertical propagation is generally extin-

guished by deeper layers of wet peat (Wein 1983;Miyanishi and
Johnson 2002; Usup et al. 2004). The propagation mechanisms
of smouldering fires in peats are complex and further research is
needed to understand howpeat conditions affect the dynamics of

self-sustained fire propagation.
In this paper, we analyse the horizontal propagation dynamics

of smouldering firesmoving away froman ignition source under a

range of controlled moisture content and bulk density conditions.
We use b regressions to estimate the propagation distance as a
function of moisture content and bulk density. We also estimate

the spread rate of the fire when self-sustained smouldering
propagation was observed. Finally, we use a linear model to
relate the properties of the peat to the spread rate of smouldering
fires. The purpose of this experimental research is to enable key

peat conditions (moisture content and bulk density) that influence
smouldering propagation to be understood.

Materials and methods

Experimental set-up

Laboratory smouldering experiments were designed to control
environmental and peat conditions. Commercial milled peat
(Shamrock Irish Moss Peat, Bord Na Móna, Newbridge,

Republic of Ireland) was used to be consistent with previous
studies (Belcher et al. 2010; Hadden et al. 2013) and because
commercially milled peat reduces extraneous sources of varia-

tion due to its homogeneous properties (Frandsen 1987, 1991;
Zaccone et al. 2014; Prat et al. 2015). The peat was placed in a
22� 18� 6-cm insulated burnbox made of fibreboard with a

thermal conductivity of 0.07–0.11Wm�1 K�1, similar to that of
peat (Frandsen 1987, 1991; Benscoter et al. 2011; Garlough and
Keyes 2011). Peats were oven-dried at 808C for 48 h.Water was

added to the dry peat until the required MC was achieved. The
moist peat was sealed in a plastic bag for 24 h before the
experiment to allow equilibration. The prepared peats had 25,
100, 150, 200 and 250% MC. This range of moisture contents

represents peat conditions that are susceptible to smouldering
ignition (Frandsen 1987; Rein et al. 2008; Benscoter et al.

2011).

A range of peat bulk densities (r, dry mass of peat per unit
volume of wet peat) was included in our experimental data. Two
bulk density treatments (BD1, BD2) were created for each

moisture content: (1) the peat was spread into the burnbox until
it filled the volume (BD1); and (2) the peat was compressed into
the burnbox until it filled the volume (BD2). This second

treatment increased bulk density by reducing the bulk volume
and the air spaces inside the sample. The range of r obtainedwas
representative of peat and duff from boreal and temperate
peatlands (Frandsen 1997; Benscoter et al. 2011; Wellock

et al. 2011; Davies et al. 2013; Thompson and Waddington
2014).

An electric igniter coil was situated along one side of the

burnbox and used to ignite a 2-cm-wide section of dry peat
(,0%MC). The coil delivered 100 W for 30 min, similar to the
heat provided by surface burning vegetation (Rein et al. 2008).

This ignition protocol was sufficient to start a smouldering front
in the dry peat section, which then attempted to spread to the
adjacent peat sample. An infrared camera (ThermaCAMSC640,
FLIRSystems,Wilsonville, OR)was used to image the radiative

energy flux from the smouldering peat surface (Prat-Guitart
et al. 2015). The position of the smouldering front was identified
using the infrared images, which provided information at a

resolution of 0.05� 0.05 cm (one pixel). The camera took
images every minute, creating sequences of between 300 and
700 images for each burn test. Experiments for each combina-

tion of MC and bulk density treatment were replicated four
times.Moisture evaporation from the peat was negligible in the
absence of a smouldering front (Table S1 in the supplementary

material, available online). We therefore assumed that mois-
ture content of unburnt peat well ahead of the smouldering
front was constant throughout the duration of the burning
experiments.

Self-propagation distance of peat fires

Once the fire self-extinguished, we recorded the final distance

(D) of the smouldering front from the igniter. A value between 0
and 1 indicated the fraction (y) of peat consumed along a transect
across the width of the burnbox at distance D from the igniter.

These fractions were transformed to avoid zeros and ones by
yD¼ (y(N � 1)þ 1/2)/N, where N is the sample size (Smithson
and Verkuilen 2006). Beta regressions were used to estimate the
association of yD with the peat bulk density r (kg m�3) and
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moisture content MC with a logit link function for the expec-
tation of yD given by:

PyD ¼ 1= 1þ exp � bD þ bD1rþ bD2MCð Þð Þð Þ ð1Þ

where bDs are the regression coefficients. A total of seven
b regressions were fitted for values of D at 6, 8, 10, 12, 14, 16
and 18 cm. Each regression was a different analysis to avoid

autocorrelation of residuals. A b regression can be viewed as a
flexible form of logistic regression that allows for a continuous
response variable (modelled by b distribution) and skew in the

response distribution (modelled by the precision parameter of
b distribution) (Cribari-Neto and Zeileis 2010). Similarly to our
b regressions, logistic regressions were used in past studies with
success or failure data to estimate the probability of peat ignition

and early propagation 10 cm away from the ignition region
(Frandsen 1997; Lawson et al. 1997; Reardon et al. 2007).

Image processing

The infrared images were corrected for the distortion caused by
the angle of the infrared camera. The burnbox surface area was
represented by ,150 000 pixels, each of them giving infor-

mation about the dynamics of the smouldering front during the
experiment. For every pixel, we built a profile of the radiated
energy flux throughout the duration of the burn (Prat-Guitart

et al. 2015). The radiative energy flux increased when an
approaching smouldering front heated the area, indicating that the
peat was being dried before the start of the combustion processes,
pyrolysis and oxidation. The start of the smouldering combustion

(tL) was defined as the time a pixel’s radiative energy flux reached
at a rate of 10 W m�2 min�1 or more. For every experiment, we
obtained a matrix of t L giving the time when the leading edge of

the smouldering front reached each pixel.
As a method to prevent boundary effects from the burnbox

edges to the smouldering front, 2 cm of pixels close to the sides

were removed from each image. The pixels from the 6 cm
closest to the igniter were also excluded to avoid effects of the
ignition heating coil. The area of pixels left, ,60% of the
burnbox surface, was used for the subsequent image analysis

and estimation of the spread rates. Image processing was
undertaken using Matlab and the Image Processing Toolbox

(version R2012b 8.0.0.783, MathWorks Inc., Natick, MA).

Estimation of horizontal spread rates

For each burn, we split the t Lmatrix into subregions of 2� 2 cm.
We then estimated the spread rate and direction of spread for
each subregion by fitting a generalised least-squares model,

assuming a linear smouldering front across the subregion. This
approach allows all the data within a subregion to inform our
estimates of spread rate and direction. The fitted model is:

tLi ¼ bxy0 þ bxxi þ byyi þ ei ð2Þ

ei � N 0; s2A
� �

where x and y are the position of the ith pixel within a subregion.
The coefficients bx andby give the rate at which t

L
i increases per

unit increase in x and y respectively; ei is the error term assumed

to be normal-distributed with mean zero and with variance–
covariance matrix s2A. The spatial correlation structure of
A was described with a Gaussian semivariogram (Pinheiro and

Bates 2000). The model was fitted using a maximum likelihood.
The spread rate of the leading front in the x direction was then
estimated as:

S ¼ 1

bx
Dx ð3Þ

where S is the subregion spread rate and Dx is the length of a

pixel (typically 0.05 cm). A spread rate was estimated for each
subregion of the burnbox and then a median spread rate ( S) and
median absolute deviationwere estimated for each experimental

burn.
We looked for detectable changes in spread rate during the

long burns (burns lasting more than 7 h). We tested the

constancy of the smouldering spread rate away from the igniter
(x direction) across the entire burnbox by regressing the median
time taken for the smouldering front to reach a pixel against

linear and quadratic terms in the distance from the igniter (see
supplementary material). The quadratic term is expected to be
zero if spread rate is constant. For each treatment, the signifi-
cance of the quadratic term was tested using the F test.

Effect ofmoisture content and bulk density on the spread rate

The effects of MC and r on S were examined using a linear
model. Even though the bulk density of the peat was based on a

compression treatment (BD1 and BD2), we took bulk density to
be a continuous variable. The two explanatory variables were
standardised (by subtracting the mean and dividing by the

standard deviation). Spread rates were log-transformed so that
model residuals were close to normality. Forward stepwise
model selection was used to arrive at a best-fit model that

minimised the Akaike information criterion, AIC (Burnham and
Anderson 2002). Only themodel with the lowest AIC is reported
in the results (Eqn 4):

log S
� � ¼ b0 þ b1MCk þ b2rk þ b3MCk � rk þ ek ð4Þ

where S is the median spread rate of each burn k, b0, b1, b2 and
b3 are the coefficients of the dependent parameters and ek is the
residuals assumed to be normally distributed. The data analyses
were done with R project statistical software (version 3.0.2,

R Core Team 2013), the betareg package (Cribari-Neto and
Zeileis 2010) the ape package (Paradis et al. 2004) and the nlme
package (Pinheiro et al. 2015).

Results

The milled peats used had an intrinsic bulk density between
50 to 150 kg m�3 (Fig. 1). Each MC treatment had a range of
bulk densities. Peats with low moisture content tended to have

higher bulk densities than peats with high moisture content
(Spearman correlation �0.4, P value 0.02).

The smouldering front always self-propagated across the

entire box (20 cm) when the moisture content was 25 or 100%
(Fig. 2). At these moisture contents, the smouldering fire was
observed to propagate as a single linear front. The smouldering
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front always self-extinguished before reaching the end of the
burnbox in peats of 200 and 250% MC. The fronts that self-
extinguished were irregular for the last 1–2 cm of propagation.
Peats with 150% MC had intermediate behaviour, with fronts

self-extinguishing in 75% of the experimental burns (Fig. 2a).
Peats with 200 and 250%MC did not self-sustain propagation in
cases with high bulk density. Only peats with 100% MC (low

and high bulk density) and peats with 150% MC and low bulk
density sustained smouldering for more than 7 h. For these long
burns, we found no evidence that the spread rate was changing

across the burnbox, as indicated by the non-significant quadratic
term for each of the peat conditions (F tests for peats with 100%
MC and low bulk density F1,48¼ 1.2, P¼ 0.28; 100% and high

bulk density F1,49¼ 2.9, P¼ 0.09; and 150% MC F1,31¼ 2.0,
P¼ 0.17).

Expected self-propagation distances from an ignition source

Peats at low moisture content were more likely to sustain

smouldering propagation for a longer distance independently of
the peat density (Fig. 3). For example, at D¼ 12 cm, peats with
25 and 100%MC had an expected fraction of peat burnt (PyD) of

0.72. At short distances (between 6 and 10 cm from the ignition
region), PyD was associated with both the moisture content and
the bulk density of the peat (Table 1), whereas PyD at longer

distances ($12 cm from an ignition area) were mainly con-
trolled by the moisture content of the peat (Table 1, D¼ 12 cm,
Fig. S1).

Effect of peat condition on the smouldering spread rates

The spread rates estimated per subregion, S, ranged between 0.6
and 9.1 cm h�1 (Table 2). Owing to self-extinction of the fire,
experimental burns with moisture contents of 150, 200, 250%

MC had a lower number of subregions where S could be
estimated.

The best-fit model is shown in Table 3. The spread rates, S,
were well explained by the model (R2¼ 0.77). There was a
significant effect ofMC andr on the spread rates of smouldering
fires, where the continuous increase ofMC had a stronger effect

on the spread rates than the increase of r (Fig. 4). The interaction
termwas also significant, indicating that for lowMC, the change in
r had a small impact on the spread rates. However, the decrease of

spread rates due to the increase of r was stronger with higherMC

(e.g. �0.015� 0.005 cm kg�1 m�3 h�1 for peats with 25% MC

and�0.022� 0.009 cm kg�1 m�3 h�1 for peats with 100%MC).

Discussion

Our results indicate that peat moisture content is the main factor
predicting the self-sustained propagation of peat fires. High peat
bulk density increases the effect of moisture content on the

dynamics of smouldering propagation. Peats#100%MC had a
70% probability of self-sustaining propagation beyond the
initial 12 cm (PyD $ 0.72). Under these conditions, oxidation

reactions along the smouldering fronts produced sufficient
energy to overcome heat losses, dry the peat and ensure
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self-sustained propagation (Benscoter et al. 2011; Huang and
Rein 2015). Even though the front propagated for 20 cm in all
bulk densities tested (Fig. 2), the spread rates were significantly

slower when bulk density was high (Table 2).
Peats above 150% MC had a high probability of extinction

after propagating through 12 cmof peat. This suggests that when

the moisture content is higher than 150%, the amount of energy
required to evaporate water ahead of the smouldering front is too
high for propagation to be self-sustained for more than 12 cm.

For distances of$12 cm, we found no effect of bulk density on
propagation (Table 1). This could be because (i) the bulk density
does not affect the fraction of peat burnt at D $ 12 cm,
suggesting that moisture content of the peat is themain predictor

of PyD, or (ii) there is an effect of bulk density on PyD when
D$ 12 cm but our data have limited power to detect this effect.
To increase the power to detect effects of bulk density, future

research should consider a larger sample size and greater variety
of moisture content and bulk density treatments within the range
tested.

The estimated PyD smouldering propagation for distances up
to 10 cm from an ignition source is comparable with the
probability of ignition and early propagation estimated in

previous studies on natural peat soils (Frandsen 1997; Lawson
et al. 1997; Reardon et al. 2007). In those studies, the 50%
probability of ignition and 10-cm propagation had a moisture
content threshold of 120%MC for Sphagnum and feather moss

peats with bulk densities between 20 and 60 kgm�3 andmineral
contents below 30% (mass of mineral content per total mass of
dry peat) (Frandsen 1997). In our analysis, peats below 160%

MC and similar bulk densities have a PyD¼ 0.5 at D¼ 12 cm,
indicating that there is a 50% probability of self-sustained
smouldering for more than 12 cm (Fig. 2). However, denser

peats with 130 kg m�3 have a PyD¼ 0.5 atD¼ 10 cm only when
the peat moisture content is below 113% MC (Fig. 3). Using
milled peats, Frandsen (1987) established a comparable thres-
hold for peat ignition and early propagation of 110% MC and

bulk density of 130 kg m�3.
Compared with peats with low bulk density, the peats with

high bulk density producemore energy owing to the oxidation of

a greater mass of peat particles (Ohlemiller 1985). However, the
modification of bulk density through compression implies that
high-bulk-density peats hold a larger mass of water per unit

volume. For a successful self-propagation, all this water needs to
be evaporated by the energy released from the adjacent smoul-
dering front. Frandsen (1991) suggested that the rate of mass

consumption is not sensitive to the bulk density of the peat. In
that sense, the energy required to keep on-going self-sustained
smouldering propagation should be proportional to the mass of
peat being consumed. We found that the spread rate of the

smouldering front is sensitive to the bulk density of the peat and
the effect depends on the moisture content of the peat (Table 3).
For example, the spread rate in peats with high bulk density and

low moisture contents (i.e. 25, 100% MC ) is not affected as
much as in peats with high moisture contents (i.e. 150–250%
MC). Peats with high moisture content and high bulk density

have a reduced rate ofO2 diffusion and a larger amount ofwater to
be evaporated before combustion. These conditions cause slower
spread rates and shorter propagation distances (Ohlemiller 2002;
Belcher et al. 2010; Hadden et al. 2013). The effect of oxygen
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availability to the smouldering reaction zone was not considered

in Frandsen (1991), as a constant oxygen flow was supplied
through the burning peat to avoid the extinction of the fire.

The spread rate of the smouldering fronts was analysed for
the first time as a function of peat conditions. The effects of

moisture content and bulk density on spread rates are consistent
with the estimates of energy required to dry and heat the peat
(estimated energy required to start thermal decomposition of

peat for each peat moisture content and bulk density treatment is
shown in Fig. S2 and Fig. S3). A greater mass of water per unit
volume requires more energy to evaporate and start combustion

(Fig. S2). However, peats with 100% MC and bulk density
below 100 kg m�3 have a higher energy demand and the fire

propagated more slowly than in peats with 150 and 200% MC

and bulk density below 75 kg m�3 (Fig. S3). For a given
moisture content, there is more energy needed to carry on

smouldering combustion when the bulk density increases
(Fig. S3). Increasing peat’s bulk density, there is a larger energy
production during the oxidation of the larger mass of peat.
However, this energy produced is less than the energy necessary

to evaporate the water in the peat. As a consequence, the spread
rate of the fire is slower or not self-sustained (Fig. 4).

Controlled smouldering tests

It should be noted that our experimentswere at a laboratory scale

and peat conditions were controlled. Therefore, caution should
be taken when using our results at the field scale. The peat
conditions (i.e. bulk density, mineral content, peat composition)

can be very heterogeneous in real ecosystems (McMahon et al.

1980). Our laboratory-scale experiments intentionally removed
these sources of variation. This allowed us to focus on the effect
of two important peat conditions (moisture content and the bulk

density) on the smouldering propagation dynamics.
Our burnbox size was designed to be suitable for the study of

horizontal propagation across greater distances than in previous

studies (Frandsen 1987; Frandsen 1997; Reardon et al. 2007),
enhancing our understanding of propagation in larger sample

Table 1. Coefficient estimates from b of peat burnt (PyD) at each distance (D) from the igniter (Eqn 1)

bD, bD1 and bD2 are coefficients estimates (�standard error) for intercept, bulk density (r)and moisture content (MC). Wald test P value significance has been

added to the coefficients where ***, 0.001; **, 0.01; *, 0.05. Phi is the model precision, Log-like is the model log-likelihood and Rp
2 is the pseudo R-squared.

Sample size in each regression¼ 36

D (cm) bD bD1 (r) bD2 (MC) Phi Log-like Rp
2

6 6.53� 1.18 *** �0.032� 0.008 *** �0.018� 0.003 *** 1.53� 0.38 *** 57.11 0.71

8 6.81� 1.19 *** �0.034� 0.008 *** �0.021� 0.003 *** 1.52� 0.37 *** 56.98 0.77

10 4.79� 1.16 *** �0.021� 0.008 ** �0.018� 0.003 *** 1.09� 0.25 *** 53.36 0.68

12 3.23� 1.09 ** �0.008� 0.008 �0.018� 0.003 *** 1.16� 0.26 *** 54.01 0.71

14 3.23� 1.09 ** �0.008� 0.008 �0.018� 0.003 *** 1.16� 0.26 *** 54.01 0.71

16 3.23� 1.09 ** �0.008� 0.008 �0.018� 0.003 *** 1.16� 0.26 *** 54.01 0.71

18 2.79� 1.09 * �0.003� 0.008 �0.018� 0.003 *** 1.22� 0.28 *** 53.07 0.73

Table 2. Estimated spread rates of the experimental smouldering fires

MC is the moisture content,BD is the bulk density treatment, r is the mean bulk density (�standard deviation). Num. burns is the total number of experimental

burn replicates. Num. subregions is the total number of subregions used to estimate spread rates, S, across all experimental burn replicates. S is the median

spread rate (�median absolute deviation) for repeated burns under the same MC and BD conditions

MC (%) BD r (kg m�3) Num. burns Num. subregions S min–max (cm h�1) S (cm h�1)

25 BD1 116� 9 4 191 2.3�7.2 4.33� 0.91

100 BD1 80� 7 4 178 1.0�7.8 2.63� 1.08

150 BD1 62� 5 4 96 1.0–4.8 2.07� 0.59

200 BD1 60� 10 4 45 1.2–5.2 2.16� 0.62

250 BD1 71� 9 3 6 1.0–2.2 1.42� 0.43

25 BD2 141� 5 3 147 1.5–6.2 2.86� 0.75

100 BD2 80� 8 4 179 0.6–9.1 1.71� 0.90

150 BD2 111� 8 3 13 0.7–1.9 1.23� 0.45

200 BD2 124� 11 3 � � �
250 BD2 114� 3 3 � � �

Table 3. Best-fit linear model for median spread rates (S)

Coefficients b0, b1, b2, b3 are parameter estimates for variables: peat

moisture content, bulk density and the interaction between them. Number

of data points in the model¼ 36, R2¼ 0.77. Residual standard error: 0.173

Estimate Standard error P value

b0 (Intercept) 0.514 0.056 ,0.001

b1 (MC ) �0.545 0.061 ,0.001

b2 (r) �0.325 0.058 ,0.001

b3 (MC�r) 0.151 0.046 0.003
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sizes. The duration of our experiment and the size were limited
by a maximum burn duration of 12 h in order to minimise the
effect of diurnal variation in ambient temperature and humidity.

The spread rates and the expected fractions of peat burnt were
both estimated assuming constant moisture content and bulk
density throughout the duration of an experiment. During our

experiments, there were no moisture content changes that could
have a substantial effect on the smouldering fire propagation
(Table S1). However, substantial changes of moisture content or

bulk density during the experiment duration could cause varia-
tion in the estimated spread rates with the distance.

The ignition of the peat along one side of the burnbox enabled
a linear propagation of smouldering fronts moving perpendi-

cularly to the igniter coil. This ignitionmethodwas developed to
estimate spread rates from infrared images that assume linear
propagation (Prat-Guitart et al. 2015). A depth of only 5 cm of

peat was used in the present study to focus solely on horizontal
smouldering propagation, avoiding vertical spread of the smoul-
dering front and limiting the multidimensional spread of a peat

fire. Previous experimental studies have examined peat ignition
in deeper samples (Rein et al. 2008; Benscoter et al. 2011).
However, deeper peat samples had smouldering fronts propa-
gating horizontally and vertically, making the study of propa-

gation dynamics more complex. The properties of the burnbox
material created similar thermal insulation as if the peat sample
were surrounded by more peat (Frandsen 1987, 1991; Benscoter

et al. 2011; Garlough and Keyes 2011). In these insulated
conditions, a sample depth of 5 cm has a small impact on our

results and they can be compared with other experiments
looking at horizontal propagation in bigger samples.

Application to peatland fires

In this study, the smouldering dynamics were studied in an area
of 22� 18 cm with homogeneous moisture content conditions,

comparable with the size of a dry patch of peat moss (Petrone
et al. 2004). In peatlands, the moisture content of the surface
peat layers is regulated by the distribution of moss species and

the position of the water table (Thompson and Waddington
2013b; Waddington et al. 2015). A heterogeneous distribution
of Sphagnum mosses is likely to cause a heterogeneous spatial
distribution of peat moisture content, creating patches of 20–

50-cm diameter (Benscoter and Wieder 2003; Petrone et al.

2004). During drought, the surface layer dries owing to lack of
rain, whichmay then be followed by a lowering of the water table

(Chivers et al. 2009; Sherwood et al. 2013; Kettridge et al. 2015).
In such circumstances, dry peats in the surface layers have less
than 250% MC (Benscoter et al. 2011; Terrier et al. 2014;

Lukenbach et al. 2015), thus being vulnerable to peat fires.
After a peat fire, the new surface layer is closer to the water

table and consequently has a reduced fire danger. Previous
studies suggested that peat fires are common in peatland

ecosystem cycles (Turetsky et al. 2002). The consumption of
surface layers of peat reduces the accumulation of organic
material, allowing Sphagnum mosses to access the water table,

being less dependent on external water inputs (Benscoter
and Vitt 2008). Post-fire surfaces also enable the roots of
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Fig. 4. Spread rate as a function of peat bulk density (y axis is on a square-root scale). Panels are for (a) 25%; (b) 100%;

(c) 150%; (d ) 200%; and (e) 250% moisture content. Dots and error bar correspond to median spread rate and median

absolute deviation for an experimental burn. Solid lines correspond to model predictions (Table 3) and dashed lines to the

prediction’s 95% confidence intervals.
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vegetation to take up ground water and nutrients from deep
mineral layers.

In peatlands, peat bulk density strongly depends on the

vegetation cover and temporal changes in the water table
behaviour (Davies et al. 2013; Sherwood et al. 2013; Thompson
and Waddington 2013a). Deep peat layers often have a higher

degree of decomposition and a higher bulk density compared
with surface layers (Benscoter et al. 2011; Thompson and
Waddington 2014). Following turf-cutting in drained peatlands,

new dense and dry layers of bare peat become exposed at the
surface and are vulnerable to peat fires.

Peats with 25% MC were included in the analysis to have a
representation of very dry peats in our sample. However, such

dry peats are uncommon in natural peatlands (Terrier et al. 2014;
Lukenbach et al. 2015), being restricted to the surface of drained
peatlands under extreme drought. In the present study, bulk

density was experimentally manipulated using two peat com-
pression treatments, which produced a range of bulk densities.
Dry peats (25%MC ) were only experimentally tested with high

bulk densities between 108 and 145 kg m�3. The high bulk
density of 25%MC peats is due in part to the structure of milled
peats and the low expansion of peat particles when a small

quantity of water is added to the peat sample (Huang and Rein
2015). The reduced expansion of the dry peat (25% MC )
compared with the greater expansion of relatively wetter peat
($100%MC ) caused the negative collinearity betweenmoisture

content and bulk density. If we exclude peats with 25%MC, we
find no collinearity between MC and r (Spearman correlation
�0.07, P value 0.7). Therefore, the negative collinearity

between MC and r (Fig. 1) is caused by the peats with 25%
MC. This collinearity could contribute to the interaction
reported in the spread rate model (Table 3) and affect extrapo-

lated predictions of spread rates (Dormann et al. 2013). The
same spread rate model but excluding peats with 25% MC had
similar b0, b1 (MC ) and b2 (r) coefficients but no significant
interaction term. Therefore, themain effects of moisture content

and bulk density on the spread rates are qualitatively not affected
by the collinearity.

All the milled peats used in the present study had a low

mineral content of less than 5%. Natural peats are characterised
as having less than 20–35% mineral content (Turetsky et al.

2015) and often ,6% (Benscoter et al. 2011). Previous studies

have suggested that large quantities of mineral content could
reduce the probability of peat ignition and posterior fire propa-
gation (Frandsen 1987; Hungerford et al. 1995). Our peats had

an intrinsic mineral content of 2.6� 0.2%, similar to the 3.7% of
Frandsen’s (1987) peats. This implies that our low-mineral-
content peats would give an upper limit on the spread rates and
propagation distance. However, small quantities of certain

minerals such as salts of calcium or magnesium, common in
plant material and soil, have been shown to have no effect on
propagation (Benscoter et al. 2011) or rather enhance heat

conduction in the fuel media that could help the smouldering
propagate faster (Frandsen 1998; Reardon et al. 2007).

Differences in bulk density can be associated with other

properties of peat soils such as soil structure, particle size, pore
space and decomposition (Ingram 1978). The variation of these
physicochemical properties can also affect the energy produced
during peat oxidation and the energy transferred through peat

particles (Reardon et al. 2007; Huang et al. 2015). The presence
of artefacts (e.g. roots, stones) may also play a role in creating
variability in peat conditions that could affect the propagation of

smouldering fires. Twigs and roots, for example, have been
reported to promote the propagation of smouldering fires
(Miyanishi and Johnson 2002; Davies et al. 2013); this is likely

a result of local changes to MC around the root.
The hydrology of peatlands as well as peat properties should

be carefully observed in order to estimate variations in moisture

and bulk density as we have shown that these peat conditions
strongly influence the propagation of smouldering fires even on
a fine scale. The spatial variability and dynamics of peat
conditions remains a challenge to studies of peat fires in the

field (McMahon et al. 1980; Hungerford et al. 1995) and
highlights why laboratory-scale studies are required to under-
stand measured effects on smouldering. The control of individual

properties such as moisture content and bulk density can then be
used to piece together the broader relationship between peat
conditions and smouldering in the natural environment. Milled

peats like those used here have been the most utilised alternative
to reduce the variability of natural peats and study the influence of
external factors (moisture, mineral content, bulk density, oxygen

availability, etc.) on smouldering combustion of peat (Frandsen
1987, 1991; Belcher et al. 2010; Hadden et al. 2013; Zaccone
et al. 2014; Prat et al. 2015).

Conclusions

This study has built on previous work on ignition and early

horizontal propagation of smouldering fires in peats. We coupled
laboratory-scale observations of smouldering fires with statistical
models to estimate and analyse the fire spread rate and the

expected fraction of peat burnt at distance longer than 12 cm. Our
findings enable an understanding of the effects of a variety of peat
moisture content and bulk density conditions on smouldering
propagation dynamics. Self-sustained fronts were observed to

propagate in peats with moisture content below 150% MC. The
bulk density of the peatwas also found to affect the propagation of
smouldering fires. The increase of bulk density enhances the

effects of moisture content on the propagation dynamics.
Our approacheshighlighted that laboratory-scale experimental

research can contribute to the theoretical insights of the behaviour

of smouldering fires. Data from this study are fundamental to
integrate a wide range of realistic peat conditions and their
associated horizontal and vertical dynamics to modelling

approaches at larger scales.
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