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Abstract. Post-fire tree mortality models are vital tools used by forest land managers to predict fire effects, estimate
delayed mortality and develop management prescriptions. We evaluated the performance of mortality models within the

First Order Fire Effects Model (FOFEM) software, and compared their performance to locally-parameterised models
based on five different forms. We evaluated all models at the individual tree and stand levels with a dataset comprising
34 174 trees from a mixed-conifer forest in the Sierra Nevada, California that burned in the 2013 Rim Fire. We compared

stand-level accuracy across a range of spatial scales, and we used point pattern analysis to test the accuracy with which
mortality models predict post-fire tree spatial pattern. FOFEM under-predicted mortality for the three conifers, possibly
because of the timing of the Rim Fire during a severe multi-year drought. Locally-parameterised models based on crown
scorch were most accurate in predicting individual tree mortality, but tree diameter-based models were more accurate at

the stand level forAbies concolor and large-diameterPinus lambertiana, themost abundant trees in this forest. Stand-level
accuracy was reduced by spatially correlated error at small spatial scales, but stabilised at scales $1 ha. The predictive
error of FOFEMgenerated inaccurate predictions of post-fire spatial pattern at small scales, and this error could be reduced

by improving FOFEM model accuracy for small trees.

Additional keywords: fire mortality modelling; FOFEM; Rim Fire; Sierra Nevada mixed-conifer; Smithsonian Forest-
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Introduction

First-order fire effects models are essential tools used by land

managers in fire-prone forest ecosystems. These models are
used to estimate the direct effects of fire including treemortality,
soil heating, fuel consumption, and smoke production
(Reinhardt and Dickinson 2010). Of particular interest to forest

land managers are tree mortality models, which are used to
estimate the probability of mortality for individual trees or
proportion of mortality for stands (Woolley et al. 2012). These

treemortalitymodels are used in post-fire landscapes to estimate
fire severity and assess changes to stand structure, and to
develop salvagemarking and hazard tree guidelines (Hood et al.

2007). Mortality models are also used by managers in pre-fire
applications to predict fire effects, conduct landscape-scale risk
assessments, and to develop silvicultural prescriptions and

prescribed fire treatments (Reinhardt and Dickinson 2010).
There are twomain types of first-order treemortalitymodels:

process-based models that use a mechanistic approach to simu-
late the processes involved in fire spread, heat-caused injury,

and subsequent tree mortality (e.g. Michaletz and Johnson
2006), and empirical logistic regression models that use indi-

vidual tree-level explanatory variables (e.g. bark thickness,
crown base height, crown volume scorched (CVS)) to predict
probability of mortality (e.g. Ryan and Reinhardt 1988). While
process-based approaches have a strong theoretical basis and

contribute to our understanding of exactly how a tree is killed by
fire, the complexity of these models has precluded their wide-
spread use among managers (Woolley et al. 2012), and their

focus on direct fire damage fails to capture the suite of biological
and ecological processes that contribute to delayed mortality
1 to 5 years post-fire (e.g. bark beetles and structural failure,

Ryan andAmman 1996). Although empirical logistic regression
models lack a mechanistic representation of tree mortality, their
simplicity and implicit integration of both immediate and

delayed mortality processes (mortality is typically assessed
3 years post-fire) have made them the most practical and widely
accessible tool for modelling fire-related tree mortality among
both researchers and land managers (e.g. Ryan and Amman
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1994; Reinhardt and Crookston 2003; Sieg et al. 2006; Hood
et al. 2007; Lutes 2016; Grayson et al. 2017).

Empirical logistic regression models are the foundation for

the tree mortality models within widely used fire effects model-
ling software packages including the First Order Fire Effects
Model (FOFEM), BehavePlus, and the Fire and Fuels Extension

to the Forest Vegetation Simulator (FFE-FVS). Although over
100 logistic regression models for western North American
conifer species have been developed (Woolley et al. 2012),

the tree mortality models incorporated within these software
packages are based on a single logistic regression model known
as the Ryan and Amman (R-A) model. The R-A model was
originally developed in the late 1980s by Ryan and Reinhardt

(1988), refined by Ryan and Amman (1994), and most recently
updated by Hood and Lutes (2017) who parameterised a set of
12 species-specific models that have been incorporated into

FOFEM since version 5.7
The R-A model (hereafter FOFEMRA) is perhaps the single

most widely used tree mortality model (Hood et al. 2007;

Reinhardt and Dickinson 2010), but it is based on a relatively
small sample of trees (n¼ 2356, Ryan and Reinhardt 1988) and
is infrequently validated with independent data (see Hood et al.

2007 andKane et al. 2017 for validationswithmany species, and
see Ganio et al. 2015 and Ganio and Progar 2017 for validations
for Pinus ponderosa and Pseudotsuga menziesii). The recent
development of species-specific versions of this model (here-

after FOFEMSP) improved model performance and increased
sample sizes for certain species (average n per species¼ 1403
trees, Hood and Lutes 2017), but validation of these species-

specific models with independent data is still rare (but see
Grayson et al. 2017 for a recent validation of FOFEMSP).

Additionally, the mortality predictions made with these

empirical models are inherently reflective of the climatic con-
ditions during which the parameterisation data were collected.
As climate influences the susceptibility of trees to fire-related
mortality (van Mantgem et al. 2013; Stephens et al. 2018),

empirical models developed under past climates may under-
predict mortality from fires that burn under hotter and drier
conditions.

The FOFEMRA and FOFEMSP models were not parame-
terised with small-diameter stems (,10 cm diameter at breast
height, DBH; there are two exceptions – the lower diameter limit

was 8 cm for Pseudotsuga menziesii, Ryan and Reinhardt 1988;
and 6 cm for ‘yellow pine’, Hood and Lutes 2017), and
validation of these models with small stems is rare (but see

Engber and Varner 2012 and Kane et al. 2017). Some studies
have developed logistic mortality models specifically for small-
diameter stems (e.g. Battaglia et al. 2009), but these studies did
not conduct a validation of the exact models within FOFEM.

Trees ,10 cm DBH are more abundant than stems $10 cm
DBH in many forests, especially if fire has been suppressed for
many decades. They influence future fire behaviour and act as

ladder fuels, and they are ecologically important as components
of the understory (re-sprouters) or advanced regeneration (sur-
viving conifers). Previous studies have found that crown scorch

influences mortality differently for small-diameter stems com-
pared with mature trees (Kolb et al. 2007; Engber and Varner
2012), and this interaction may compromise the accuracy with
which FOFEM predicts mortality for small-diameter trees.

Previous validations of the FOFEMRA and FOFEMSPmodels
have also not assessed how stand-level accuracy may vary
across a range of spatial scales. Stand-level accuracy is typically

assessed by grouping trees according to their probability of
mortality, then calculating the proportion of observed mortality
within each group (sensu Hood et al. 2007). Although this

approach may be used to estimate stand-level accuracy without
requiring a spatially-explicit (i.e. stem-mapped; Lutz et al.

2018a) dataset, it implicitly assumes that fire-related mortality

is a spatially homogeneous process. As mechanisms of delayed
fire mortality can be spatially auto-correlated (e.g. bark beetle
activity is patchy, and trees may survive higher levels of fire
damage if they are in a more mesic area), stand-level model

accuracy may therefore be modified by the presence or absence
of these neighbourhood-level variables. The positive and nega-
tive effects associated with spatially correlated mechanisms of

delayed mortality may equalise if stand-level accuracy is
assessed at a large enough scale, but the scale at which this
happens remains unknown. A multi-scale assessment of stand-

level accuracy would provide a more robust estimate of model
performance, and would enable us to quantify the scale at which
local neighbourhoods may modify delayed mortality.

Mortality models are often used in a pre-fire context to
assess potential fire effects and plan restoration activity, but
a challenge to using the FOFEM models in a pre-fire context
is that they require metrics of fire injury as predictor variables.

Out of over 100 models that have been developed (Woolley
et al. 2012), we found no model that relies exclusively on
pre-fire tree attributes to predict mortality. The reason for this

is obvious – fire damage is an important determinant of fire-
related mortality. However, this limits the utility of these
models in pre-fire planning applications because fire-damage

attributes must be estimated, and this introduces an additional
layer of uncertainty when interpreting the model results and
evaluating their predictive accuracy. Metrics of fire damage
have been considered necessary to create acceptably accurate

mortality models, but these metrics are often tightly correlated
with tree attributes that may be measured pre-fire, such as
diameter at breast height (Fig. S1, available as Supplementary

material to this paper). Given this correlation, a pre-fire
model based on diameter, species, and surface fuel loads may
predict mortality with an acceptable level of accuracy, and

this may be useful to managers seeking to model mortality in a
pre-fire context.

A final area for improvement in empirical mortality model-

ling is to consider the accuracy of mortality models in predicting
post-fire tree spatial patterns. Fire is a spatially explicit distur-
bance process (Meddens et al. 2018) and is an important driver
of spatially structured stand dynamics in fire-adapted forests

(Larson and Churchill 2012). Spatial pattern is a key element of
forest structure (Lutz et al. 2013), and it has an important
influence on forest heterogeneity, resilience, and future distur-

bance dynamics (Stephens et al. 2008). Restoring spatial pat-
terns and heterogeneity characteristic of fire-prone forests has
become a central aim of many forest restoration efforts through-

out the western United States (e.g. Allen et al. 2002; North et al.
2007, 2009; Churchill et al. 2013), but to our knowledge the
accuracy with which logistic mortality models scale up to
predict post-fire tree spatial patterns has not been assessed.
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Our objective was to advance the science of empirical fire
mortality modelling in three ways. First, we conducted a
validation of the widely used FOFEM tree mortality models

with a sample size of 34 174 stems ranging from 1.0 cm to
200.7 cm DBH, and we assessed both the individual tree- and
stand-level accuracy of these models. Second, we developed
locally-parameterised logistic regression models based on CVS

and DBH to estimate of the maximum accuracy these models
may attain, and to compare how different model forms influence
model performance across different diameter classes. Third, we

developedmethods for quantifyingmodel accuracy at a range of
spatial scales and assessing the accuracy with which mortality
models predict fire-induced change in tree spatial patterns.

This study is unique among existing mortality modelling
literature in that the dataset we used is a census rather than a
sample. Previous mortality modelling studies generally sample
post-fire forests across multiple regions and fire events, select-

ing a subset of trees to create a reasonably balanced sample
across diameter and CVS classes. This approach is well suited to
developing mortality models with broad applicability, but it is

less optimal for validating those models because the dataset is
balanced, but not representative. An optimal validation dataset
includes a large number of stems, representing a wide range of

diameters, in proportion to their abundance in a particular forest
type. A validation with this type of dataset permits mortality
models to be tested in a context similar to how they are used by

managers – to predict structural and compositional changes to a
specific forest following fire. Model accuracy may then be
assessed in terms of ‘percentage error’ by diameter class, a

metric with very tangible implications for managers using
mortality models to estimate fire effects at the stand scale.
In this study, we conduct the first validation of FOFEM using
a complete census of trees $1 cm DBH from a large-scale

permanent forest plot.

Methods

Study area

We conducted this study in the lower montane, mixed-conifer
zone of the Sierra Nevada, CA, USA (Fig. 1a). We used data
from the Yosemite Forest Dynamics Plot (YFDP; Lutz et al.

2012, 2014b), a 25.6-ha plot affiliated with the Smithsonian
ForestGEO network (Anderson-Teixeira et al. 2015; Lutz
2015). The YFDP is located in an old-growth (oldest trees.500

years old) Abies concolor–Pinus lambertiana (white fir–sugar
pine) forest between 1774 and 1911 m elevation (Fig. 1b, c)
with species composition representative of the Sierra Nevada

white fir superassociation (Keeler-Wolf et al. 2012). Within
the YFDP, all tree stems $1 cm DBH were tagged, identified,
mapped in 2009 and 2010 (n¼ 34 458 live stems; Lutz et al.

2012), and tree status was updated in June 2013, 2months before

the YFDP burned. We considered the five most abundant

(a) (b)

(c)
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Fig. 1. The Yosemite Forest Dynamics Plot (YFDP) is located on the western slope of the Sierra Nevada, CA, USA (a), and was

burned in a backfire set in the path of the California Rim Fire in September of 2013 (b). Burn severity classifications based on

differenced Normalised Burn Ratio (Miller and Thode 2007). The dimensions of the YFDP are 800m east–west by 320m north–south,

elevations range from 1774 to 1911 m (c); dots represent 34 458 trees sized by diameter at breast height (DBH; cm) and coloured

(shaded in greyscale version) by crown volume scorched (CVS;%). Background: Landsat 8, natural colour image, 10 August 2017.
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species within the YFDP: white fir (Abies concolor [Gordon]
Lindl. ex Hildebr.; 939 stems ha�1), sugar pine (Pinus
lambertianaDouglas; 180 stemsha�1), Pacific dogwood (Cornus

nuttallii Audobon; 106 stems ha�1), incense cedar (Calocedrus
decurrens [Torr.] Florin; 64 stems ha�1), andCalifornia black oak
(Quercus kelloggiiNewb.; 46 stems ha�1). Although A. concolor
was the most abundant species, P. lambertiana had approxi-

mately the same pre-fire live basal area (30.6 and 28.8 m2 ha�1

respectively) and was the most abundant large-diameter
($100 cm DBH) stem (n¼ 343 stems, Table 1).

The historical (pre-suppression) fire regime in lower mixed-
conifer forests of the Sierra Nevada was characterised by
frequent (fire-return intervals ranging from 5 to 32 years, Caprio

and Swetnam 1995), relatively small (median area¼ 115 ha,
Scholl and Taylor 2010), low- to moderate-severity fires (van
Wagtendonk and Fites-Kaufman 2006). In the modern post-
suppression era, fires in Sierra Nevada forests have become

larger in overall size and have greater proportions of moderate
and high severity (van Wagtendonk and Lutz 2007), and this
trend is predicted to continue as winter snowpack declines (Lutz

et al. 2009). Prior to 1900, the mean fire-return interval in the
YFDP was 29.5 years, with the last widespread fire occurring in
1900 (Barth et al. 2015).

The YFDP was burned on 1–2 September 2013 in a
management-ignited fire set to control the spread of the Rim
Fire, a large wildfire that burned 104 131 ha of Stanislaus

National Forest and Yosemite National Park (Fig. 1b; Lydersen
et al. 2014). The ignition occurred in the afternoon in a mixed-
forest–chaparral vegetation type atop the Crane Flat lookout
,1 km from the plot, and no management action was taken

within the YFDP before or after ignition. The fire backed
downslope through the western portion of the plot during the
night of 1 September, and burned upslope through the remaining

eastern portion the following day (Larson et al. 2016). The fire
was active within the YFDP for ,30 h, although smouldering
continued in some large coarse woody debris throughNovember

2013 (T. Furniss and J. Lutz, pers. obs.). Fire intensity ranged
from low- to high-intensity surface fire with some crown
torching (based on Fire Behaviour Assessment Team cameras

and thermocouples, Lutz et al. 2017a; Fig. 1c). Surface fuel
consumption was 95% for litter, 93% for duff, 90% for 1 h fuels,
86% for 10 h fuels, 96% for 100 h fuels, and 61% for $1000-h

fuels (Larson et al. 2016). Although the fire was management
ignited, satellite-derived fire severity (Fig. 1c) was consistent
with recent fires in the mixed-conifer zone of the Sierra Nevada
(van Wagtendonk 2007; van Wagtendonk and Lutz 2007; Lutz

et al. 2009), and the area that was management ignited was
found to be indistinguishable from the wildfire-ignited area
within the fire footprint (except for that portion that was plume-

dominated) using a wide range of remote sensing techniques
(Kane et al. 2015).

In May 2014, we revisited every stem in the YFDP and

measured CVS, DBH, and live or dead status (hereafter ‘imme-
diate fire mortality’). We also conducted full mortality censuses
in the summers of 2015 and 2016 tomeasure delayed fire-related
mortality (i.e. mortality of trees that survived.1 year post-fire).

We considered ‘mortality’ as the aboveground death of individ-
ual stems, a method that overestimates mortality of some
hardwood species that are fire-adapted to re-sprout post-fire.

Considering this, we also recorded whether C. nuttallii and
Q. kelloggii individuals were sprouting post-fire.

Model parameterisation

For each species, we extracted the corresponding logistic model
forms and regression coefficients used in the FOFEM software

(Lutes 2016). Species-specific models based on CVS were
available for A. concolor, P. lambertiana, and C. decurrens

(FOFEMSP; Hood and Lutes 2017). Species-specific models
were not available for Q. kelloggii and C. nuttallii, so we used

the default model (FOFEMRA; Ryan and Reinhardt 1988). The
FOFEMRA model uses two independent variables, CVS and
bark thickness (BT), where BT is calculated according to the

function DBH�Vsp, where Vsp is a species-specific coefficient
(table 4.76 in Reinhardt and Crookston 2003).

We created locally-parameterised models based on the same

independent variables and generalmodel forms used in FOFEM,
but with re-parameterised coefficients. For each species, we
created 1st, 2nd, and 3rd order polynomial models with CVS as

Table 1. Number of pre-fire live stems of the five most common species within the Yosemite Forest Dynamics Plot (YFDP)

Immediate mortalities are those stems identified as dead in May 2014, 8 months after the California Rim Fire. Delayed mortalities are stems that survived

through May 2014, but died within the following 2 years. Total fire-related mortalities includes all stems that died within 3 years of the fire. Rarefied N is the

number of stems retained after the dataset was rarefied by 20%CVS bins. Crown volume scorched (CVS) and diameter at breast height (DBH) (1.37m)metrics

indicatemean values for the stems used in all analyses.MinimumDBH for all species was 1 cm. The range of CVS values was 0 to 100%, andmedian CVSwas

100% for all species. The ‘95th’ column represents the 95th percentile threshold diameter. Bold indicates the total values for all species combined.

Rarefied N Number of stems CVS (%) DBH (cm)

Live pre-fire Fire-related mortality

Species $1 cm $50 cm $100 cm Immediate Delayed Total Mean Med. Mean 95th Max.

Abies concolor 4472 24 032 856 99 17 385 2826 20 211 84 7.7 13.1 80.1 164

Pinus lambertiana 728 4618 790 343 2940 618 3558 73 8.9 25.8 155.5 200.7

Cornus nuttallii 126 2717 0 0 2081 140 2221 84 2.7 4.3 16.3 25.2

Calocedrus decurrens 400 1636 145 43 1044 122 1166 76 8.3 17.5 123.7 165.6

Quercus kelloggii 128 1171 4 0 701 112 813 78 14.6 14 43.3 60.6

Total 5854 34 174 1795 485 24 151 3818 27 969 – – – – –
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the single independent variable and 3-year post-fire status as the
binomial response variable (as with FOFEMSP), and we chose
the model with the minimum Akaike information criterion

(AIC) as our final ‘CVS’model. ForQ. kelloggii andC. nuttallii,
we created optimised models with both BT and CVS as
independent variables, but we eliminated BT from our final

models because we attained a better fit using CVS alone. All
models we created were generalised linear models with a logit
link and the logistic model form:

Pm ¼ 1

1þ e� b0þb1X1þ...btXtð Þ ð1Þ

where Pm is probability of mortality (within 3 years), e is the
base of the natural logarithm, b0 – bt are regression coefficients,
andX1 –Xt are predictor variables (e.g. CVS, CVS

2).We fit each

model using the iteratively reweighted least-squares method of
maximum likelihood estimation; model coefficients may be
found in Table S1 (available as Supplementary material to this

paper).
Upon preliminary analysis, we found that the third-order

polynomial equations typically used in logistic mortality model-

ling often resulted in non-monotonic fits to our data (i.e. a tree
with 25% CVS had a higher modelled probability of mortality,
Pm, than a tree with 50%CVS; Fig. S2, available as Supplemen-
tary material to this paper). This may have been caused by the

combination of two factors: tree DBH was negatively related to
CVS (Fig. S1), and large-diameter trees can be more susceptible
to fire damage comparedwith small trees (Kolb et al. 2007). The

higher relative proportion of large-diameter trees at low CVS
levels may have inflated Pm (20–30% CVS; Fig. S2), whereas
the higher proportion of medium-sized trees may have reduced

Pm for intermediate CVS levels (40–60% CVS; Fig. S2). This
suggests that the dip inPm is an artefact related to the interaction
between CVS and DBH, and may not reflect the true physiolog-

ical relationship between CVS and Pm for trees of the same size.
Although there are multiple mechanisms through which fire
damage may lead to mortality (e.g. reduced photosynthesis,
Smith et al. 2016, 2017; increased susceptibility to beetles and

pathogens, Parker et al. 2006; Hood and Bentz 2007), these
mechanisms are all positively related to fire damage. In other
words, a tree with more fire damage will have greater reduction

to photosynthetic ability and be more susceptible to biotic
mortality agents, and both of these indirect fire effects will
increase probability of mortality. We resolved this problem in

three different ways: we rarefied our dataset by CVS, we created
additional CVS-based models that were constrained to be
monotonic (i.e. no dip), and we created CVS-based models with
a CVS :DBH interaction term. We rarefied our dataset by 20%

CVS bin (10% bins used at high and low limits) by randomly
selecting n trees from each CVS bin, where n is the minimum
number of trees in any of the bins (n per species reported in

Table 1). This rarefaction procedure reduced the severity of the
dip, but it did not remove it entirely (Fig. S2). To reduce the dip
completely, we developed an alternative CVS-based model

form that was constrained to be monotonically increasing (slope
was not held constant, but was always positive). This alternative
model (CVSmono) used CVS and CVS2 terms to fit the lower

range of CVS values, but replaced the CVS3 term with a higher-

order polynomial (e.g. CVS8). Removing the CVS3 term
removed the dip, and the high-order polynomial gave the curve
an inflection point and a steep increase in predicted Pm values

above the inflection. The power of the polynomial was chosen
using an iterative procedure beginning with the lowest value
necessary to obtain a monotonic fit (CVS4 or CVS5) and raising

the power by one until minimum AIC was reached. As we
increased the power of the polynomial, the inflection point
moved to the right and the slope of the curve beyond the inflection

point became steeper. We dropped the CVS2 term if we obtained
a betterAICwithout it. Although this approach is novel, itwas the
most tractable way could find to constrain a logistic model to be
monotonically increasing. Full R code developed for this model

fitting procedure in the Supplementary material.
The final method we used to address the interaction between

CVS and DBH was to develop additional CVS-based models

which included both DBH and CVS :DBH interaction terms
(one interaction term per CVS polynomial level; CVS :DBH,
CVS2 : DBH, and CVS3 : DBH). In previously developed CVS-

based mortality models, DBH has often been omitted because
CVS and DBH can be co-linear, and dropping the DBH term
may actually improve AIC (this was the case with FOFEMSP;

Hood and Lutes 2017). However, eliminating the DBH term
ignores any possible interactions between CVS and DBH (e.g.
Kolb et al. 2007; Engber and Varner 2012), and this may bias
CVS-based models to be less accurate for large-diameter trees

(which are less abundant).
To facilitate comparisons with previous studies, we created

one final CVS model based only on trees $10 cm DBH

(CVSgt10). Lastly, we generated species-specific mortality mod-
els using pre-fire DBH as the single predictor. In total, we
evaluated and compared six models for each species: FOFEM

(FOFEMRA for Q. kelloggii and C. nuttallii and FOFEMSP for
all other species), four locally-parameterised CVS-based mod-
els (CVS, CVSmono, CVSþDBH and CVSgt10) and a locally-
parameterised DBHmodel (DBH). All CVS-based models were

parameterised using the rarefied dataset.

Model validation

We validated all models using 10-fold cross validation (sensu
Regelbrugge and Conard 1993; Hood and Lutes 2017) to min-

imise the bias associated with parameterising and validating
models using the same dataset (Kohavi 1995). We performed
this procedure by first partitioning our data into 10 random

groups. We then used nine groups to parameterise each model
and generate predictions for the trees in the 10th group. This
process was repeated 10 times, leaving out a different group
each time. The resulting model prediction for each tree is

therefore based on a model that was parameterised using a dif-
ferent subset of the data. Although models were parameterised
using the rarefied dataset, we used the full dataset to validate

each model.
We summarised model performance in three ways: individ-

ual tree-level accuracy (correctly classifying individual stems),

stand-level accuracy (predicting the proportion of mortality per
species and diameter class), and accuracy in predicting post-fire
tree spatial pattern. A key distinction between these three levels
is that individual tree metrics use the model response value (Pm)

50 Int. J. Wildland Fire T. J. Furniss et al.



as a binomial classifier thus requiring a cut-off threshold
(e.g. trees with Pm $0.5 are predicted to die whereas trees with
Pm ,0.5 are predicted to survive). Stand-level and spatial

pattern accuracy may be summarised by using Pm as continuous
probability value (e.g. for trees with Pm¼ 0.8, 80% will be
predicted to die).

Individual tree accuracy

We assessed individual tree-level model accuracy by calculat-
ing sensitivity (correctly identified mortalities), specificity

(correctly identified survival), overall accuracy (percentage
correctly categorised), DAIC (AIC for each model – the lowest
AIC value) and area under the Receiver Operating Character-
istics (ROC) curve (AUC). We used a threshold Pm value of 0.5

to classify tress as live or dead.
Although individual tree-level metrics are widely used to

evaluate mortality model accuracy (e.g. Grayson et al. 2017),

these metrics may not be simply scaled up to evaluate stand-
level performance. In other words, a model may have high
individual-tree accuracy while simultaneously systematically

over- or under-predicting mortality at the population or forest
stand level. The strength of stand-level model accuracy assess-
ment is that it permits the evaluation and comparison of

mortality models in a way that describes observable changes
in forest structure following fire. For example, a model
may accurately predict small-diameter mortality while under-
predicting large-diameter mortality (due to large-diameter trees

having unique vulnerabilities to fire damage, Kolb et al. 2007).
This model would have high individual-level accuracy because
small-diameter trees are abundant and individual accuracy

metrics weight all trees equally, but it would not be reliable
for predicting mortality of large-diameter trees. Large-diameter
trees represent an ecologically unique element of forest structure

(Lutz et al. 2018b), and accurately predicting their fate follow-
ing fire is important for improved predictions of aboveground
biomass and carbon storage (sensu Lutz et al. 2017b).

Stand-level accuracy

We used individual-tree model response values to scale up our
predictions to the population-level for each species. Although

this analysis was based on populations (grouped by species), we
refer to this scale as ‘stand level’ to maintain consistency with
previous studies (sensu Hood et al. 2007). We assessed model

accuracy by grouping trees by species and diameter and calcu-
lating percentage error as:

ðNmodel � NobsÞCNbin ð2Þ

where Nmodel is the number of modelled mortalities, Nobs is the
number of observed mortalities, and Nbin is the number of trees

in each diameter class. This approach is similar to the method
used byHood et al. (2007) to assess stand-level accuracy, but we
grouped stems by diameter class rather than by Pm (sensu Kane
et al. 2017). This allows us to evaluate model performance

across a range of diameter classes rather than across the range of
Pm values. The number of dead trees predicted were identified
for each model by assigning a status of either live or dead based

on the continuous value of Pm for that individual stem (e.g. a

stemwith aPm of 0.85 has an 85%chance of being identified as a
dead tree), and these dead trees were summed for each bin.

Multi-scale stand-level accuracy

We summarised stand-level accuracy across a range of spatial
scales by sampling trees within randomly located quadrats
within the YFDP ranging in area from 0.04 ha (20� 20 m) to

2.56 ha (160� 160 m). We sampled 10 quadrats of each size
without replacement and calculated the stand-level error for all
trees within each quadrat. There are two potential sources of this

stand-level error: (1) small spatial scales include few trees, and
there is more stochastic error because there is higher variability
between sample means for smaller samples compared with
larger samples, and (2) spatially correlated error due to the

spatial autocorrelation of agents of delayed mortality. In other
words, trees with the same level of fire damage may die at dif-
ferent rates if they are on a ridge v. in a drainage, or if they are in

a beetle-kill patch v. a patch with no beetles. As mortality
models predict mortality based only on individual tree proper-
ties, these neighbourhood-level factors affecting mortality

contribute to model error.
To differentiate between these two sources of error, we used

a null model designed to capture stochastic error (due to small

sample size) but not spatially correlated error. We created this
model by pairing each spatially explicit sample with a non-
spatial sample of the same number of trees, randomly selected
from the entire YFDP. This null model may be interpreted as

the amount of error due to small sample sizes, and any excess
error is attributable to spatially correlated processes that
modify the probability of mortality for all trees within a given

area.
We note that spatially correlated error is not the same as

patchiness in fire effects: patchy fire behaviour is largely

captured by tree-level metrics of fire damage such as CVS
(resulting in spatially correlated mortality, but not necessarily
model error), whereas spatially correlated error describes model

error due primarily to the spatial signature of factors influencing
delayed mortality.

Spatial pattern accuracy

We further scaled our assessment of model performance to the

community level by evaluating live tree spatial patterns for the
entire forest community (all species grouped). We assessed
post-fire spatial pattern accuracy by quantifying and comparing

pre-fire, post-fire, and modelled post-fire spatial patterns of
trees within the YFDP. We used two methods: clump size
analysis, a method of local pattern analysis often used to char-
acterise spatial patterns in frequent-fire forest ecosystems

(Plotkin et al. 2002; Larson and Churchill 2008); and spatial
point pattern analysis, a method that has been used to infer
ecological process in a variety of contexts (e.g. Lutz et al. 2014a;

Larson et al. 2015; Furniss et al. 2017).
For the clump size analysis, we summarised spatial pattern as

the number of clumps of trees as a function of clump sizes (i.e.

number of clumps with 2 trees, 3 trees, 4 trees, etc.). We used an
inter-tree distance threshold of 6 m to identify distinct clumps
(i.e. clumps are groups of trees which are spaced no further apart
than 6 m), as this was a found to be an optimal distance by
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Churchill et al. (2013). We compared each model by generating
99 simulations of mortality (where each tree was assigned a
status of live or dead based on Pm) to obtain an estimate of the

amount of variability in the modelled spatial pattern for each
model.

For the point pattern analysis, we summarised spatial

patterns with the pair correlation function (PCF), g(r), a point
pattern summary statistic that describes the second-order char-
acteristics of a spatial pattern across a range of scales (Wiegand

and Moloney 2004). The PCF is defined as:

g rð Þ ¼ K 0 rð Þ
2pr

ð3Þ

where K0(r) is the derivative of Ripley’s K function (Ripley

1976). To summarise observed patterns, we calculated gpre(r)
based on the pattern of trees that were alive pre-fire in 2013, and
gpost(r) based on the pattern of trees that survived for at least 3
years post-fire (live as of 2016). We quantified model accuracy

in predicting post-fire spatial patterns by generating 99 simula-
tions of mortality for each model (where mortality was re-
assigned for each simulation, as with the clump analysis), and

gmodel(r) was calculated for the set of ‘surviving’ trees for each
of these simulations. We generated simulation envelopes
(Baddeley et al. 2014) based on the minimum and maximum

values from these simulations, and an estimate of the true value
of gmodel(r) based on the mean value from the simulations. We
calculated change in pattern by gpost(r) – gpre(r). We compared

the observed and modelled patterns to the null model of
complete spatial randomness (CSR; Wiegand and Moloney
2004) for the static patterns, gmodel(r), and the null model of
‘no change’ for the differenced patterns, gpost(r) – gpre(r).

For the multi-scale accuracy and spatial pattern analyses, we
omitted two of the CVS-based models (CVS, CVSmono, and
CVSgt10 all performed similarly; we retained the best one) to

maintain interpretability of the figures. Analyses were con-
ducted in R (ver. 3.4.1, R Foundation for Statistical Computing,
Vienna, Austria, https://cran.r-project.org, accessed 7 Novem-

ber 2018) using the spatstat package (ver. 1.52–1; Baddeley
et al. 2015; http://www.spatstat.org, accessed 7 November
2018).

Results

Out of 34 174 pre-fire stems (1 cm#DBH, 201 cm), there was
immediate mortality of 24 151 stems and delayed mortality of
3818 stems (Table 1). The mean CVS for immediate mortalities

was 99.7%, 66% for delayed mortalities, and 23% for surviving
trees (Fig. S3, available as Supplementary material to this
paper). The mean CVS for trees$1 cm DBHwas 82%, 19% for
trees$50 cmDBH, and 12% for trees$100 cmDBH.Mortality

rates (3-year rates) by diameter class were 82% for trees$1 cm
DBH, 63% for trees$50 cm DBH, and 28% for trees$100 cm
DBH. Mortality rates for conifers were 84% for A. concolor,

77% for P. lambertiana, and 71% for C. decurrens (Table 1).
Mortality rates for the hardwoods were 82% for C. nuttallii and
69% forQ. kelloggii, although 19% of top-killedC. nuttallii and

70% of top-killed Q. kelloggii were re-sprouting post-fire. The
mean (and median) DBH was 7.4 cm (5.2 cm) for immediate

mortality, 24.8 cm (18.1 cm) for delayed mortality, and 35.1 cm
(25.9 cm) for surviving trees.

Individual tree accuracy

The locally-parameterised CVS-based models had the best AIC
and higher overall accuracy compared with FOFEM and DBH-
based models (Table 2). Adding a DBH interaction term

(CVSþDBHmodel) improved AIC for A. concolor, but did not
improve AIC for other species. The monotonic CVS model
(CVSmono) improved AIC for all conifers (Table 2). Although

the AIC of the FOFEM models was worse than the AIC of the
locally-parameterised CVS models, overall accuracy (i.e. total
percentage correct) of FOFEM was similar for all three
gymnosperms.

Stand-level accuracy

Considering stand-level accuracy, the DBH model was the best
model for small- to medium-diameter trees (,20 cm DBH)

of most species (Table 2). For A. concolor, the DBH model was
the most accurate for stand-level predictions for all diameter
classes. For P. lambertiana, the FOFEMSP model was best

for stems ,10 cm DBH, the CVS models were best for stems
10 # DBH ,100, and the DBH model was most accurate for
stems $100 cm DBH. Adding the DBH interaction term

improved model performance considerably for A. concolor,
compared with CVS-based models without the interaction term.
The DBH interaction term did not improve performance for
most size classes of C. decurrens and P. lambertiana, but the

CVSþDBH model did improve accuracy by 2% for large-
diameter C. decurrens and P. lambertiana (.100 cm DBH;
Table 2). In contrast, the CVSþDBH model decreased model

accuracy for the largest stems of both hardwood species. The
CVSmono model was more accurate than the non-monotonic
CVS model for stems ,20 cm among all species, but the two

CVS models were generally equivalent for larger diameter
classes (Table 2, Fig. 2). The CVS models based only on stems
$10 cm (CVSgt10) were generally equivalent to the base CVS

model for stems $20 cm DBH, but accuracy was worse for
stems ,20 cm DBH and all sizes of Q. kelloggii.

Stand-level accuracy of the FOFEMmodels was within 15%
of observed mortality for A. concolor, C. decurrens and

P. lambertiana ,40 cm DBH, but mortality was consistently
under-predicted (Table 2, Fig. 2). FOFEM under-predicted
large-diameter ($100 cm DBH) P. lambertiana mortality

by 17% and over-predicted mortality for Q. kelloggii and
C. nuttallii, especially for stems $10 cm DBH (18–32%).

Multi-scale accuracy

Stand-level errorwas negatively related to spatial scale (Fig. 3a–d).
We observed this pattern for all models, as well as for each
null model. The decreasing error in the null models indicates

that some of the error was due to the small number of trees
included in the spatial samples at small scales. As spatial scale
increased, sample size grew and error in the null model was
reduced. However, we also observed additional error in the

spatially explicit samples that was greater than the error cap-
tured by the null models, indicating that there was spatially
correlated error. The CVS-based models were the most accurate
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at small scales, predicting mortality within 10% of observed

levels at all scales .0.1 ha. Model error for FOFEM and the
DBH model fell within 10% at scales .1.4 and .1.2 ha
respectively, but the DBH model had much greater error at

scales ,1 ha.

Spatial pattern accuracy

The fire decreased the number of clumps from 3 to 1 ha�1 for
clumps of 5–20 trees, andmean clump size decreased from 10 to

7 trees per clump. All models accurately predicted this change

(Fig. 3e), although the FOFEMmodel slightly overestimated the
number of clumps at clump sizes ranging from 5 to 26 trees per
clump. We were not able to differentiate the CVS- or DBH-

based models from the observed pattern using the clump size
analysis.

The spatial pattern of live stems within the YFDP became
more aggregated after the fire (Fig. 3f). Both the CVSmono and

CVSþDBHmodels accurately predicted this change in pattern,

Table 2. Comparison of individual and stand-level model performance for six different species-specific mortality models in predicting fire-related

mortality

The six models include a diameter at breast height (DBH) model, three crown volume scorch models (3rd order polynomial, CVS; monotonic polynomial,

CVSmono; and based on trees$10 cm, CVSgt10), one CVS model with a DBH interaction (CVSþDBH), and the models used in the First Order Fire Effects

Models (FOFEM) software version 5.7þ. Models were parameterised based on rarefied data (n in Table 1) and validated with 10-fold cross validation of the

entire dataset. All model equations may be found in Table S1. We quantified model performance for individual trees with mortality percentage correct (Mort.;

true positive rate, TPR), survival percentage correct (Surv.; true negative rate, TNR), overall accuracy (Acc.), Akaike information criterion (DAIC) and area

under ROC curve (AUC). We quantified stand-level model performance using percentage error by diameter class (positive percentage error indicates over

prediction of mortality, negative indicates under prediction). The top 5% includes the largest 5% of stems for each species (diameter thresholds for the top 5%

may be found in Table 1)

Model Individual trees Stand level percentage error

Mort. (TPR) Surv. (TNR) Acc. Diameter class (cm) Top 5%

DAIC AUC 1–5 5–10 10–20 20–40 $40 $100

Abies concolor

DBH 96 45 88 10 019 86.7 0 �1 1 0 0 �1 0

CVS 95 87 93 231 97.1 �3 �4 �6 2 14 11 15

CVSmono 95 88 94 165 97.2 0 �1 �4 2 14 11 14

CVSþDBH 95 87 94 0 97.6 �1 �2 �3 0 �1 �13 �1

CVSgt10 95 88 94 – 97.1 �6 �7 �8 0 13 10 13

FOFEMSP 91 97 92 5120 97.2 �2 �4 �12 �13 �3 �4 �2

Calocedrus decurrens

DBH 92 58 82 1053 86 �2 2 3 2 �3 9 2

CVS 95 92 94 16 97.4 �8 �9 �4 5 2 2 �1

CVSmono 93 97 94 0 97.6 �2 �4 �1 5 2 3 �1

CVSþDBH 95 92 94 18 97.4 �7 �8 �4 4 �1 0 �2

CVSgt10 95 92 94 – 97.4 �13 �14 �9 2 �1 �1 �4

FOFEMSP 90 100 92 511 97.6 �7 �11 �11 �8 �7 �4 �8

Cornus nuttallii

DBH 100 0 82 2380 58 0 �1 0 �8 – – 0

CVS 98 93 97 0 97.3 �11 �9 �8 �5 – – �5

CVSmono 98 93 97 1 97.2 �7 �6 �5 �3 – – �2

CVSþDBH 91 94 91 6 96.5 �2 �14 �42 �59 – – �48

CVSgt10 1 95 17 – 47.2 �83 �78 �69 �61 – – �64

FOFEMRA 100 0 82 2133 97.1 13 16 22 26 – – 25

Pinus lambertiana

DBH 90 67 85 2365 88.6 �1 �1 1 5 �2 2 3

CVS 89 94 90 14 94.1 �3 �3 �3 �1 0 �5 �5

CVSmono 89 92 90 0 94.3 1 1 �1 �2 0 �4 �5

CVSþDBH 89 94 90 18 94.4 �2 �2 �3 �2 0 �3 �3

CVSgt10 89 93 90 – 94.1 �6 �6 �5 �2 1 �3 �4

FOFEMSP 88 94 90 1471 94.3 0 0 �4 �10 �13 �17 �18

Quercus kelloggii

DBH 95 17 74 1129 74.8 3 �8 �3 6 �3 – 4

CVS 97 89 95 3 95.6 �14 �16 �11 �6 �7 � �5

CVSmono 97 92 95 0 95.9 �5 �7 �5 �3 �4 � �3

CVSþDBH 96 91 95 8 95.9 �2 �5 �7 �10 �21 – �15

CVSgt10 97 91 96 – 95.1 �19 �20 �16 �10 �10 – �8

FOFEMRA 100 10 75 1015 96.4 9 5 18 32 22 – 30
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although the magnitude of the observed increase in aggregation

was greater than the models predicted, especially at small scales
(0 to 2 m; Fig. 3g). The CVSmono model had the greatest spatial
pattern accuracy: the mean value of g(r) from the 99 simulations

was the closest to the observed post-fire pattern, and this was the
only model for which the observed value of gpost(r) – gpre(r) fell
within the model’s simulation envelope (at r .2 m; Fig. 3f, g).

In contrast to the observed increase in aggregation post-fire,
the DBH and FOFEM models both predicted reduced aggrega-
tion at small scales post-fire (Fig. 3g). Although FOFEM
correctly predicted increased aggregation at spatial scales

.1.5 m, the DBH model predicted increased dispersion at all

scales 0 to 10 m.

Discussion

Model validation

Mortality of individual trees was predicted with a high degree of

accuracy by all CVS-based models (CVS, CVSmono, CVSgt10,
CVSþDBH, and FOFEM; Table 2). Indeed, CVS is a direct
measure of physical damage incurred during the fire, and this
damage is closely related to tree death (Peterson 1985;
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Weatherby et al. 1994; Sieg et al. 2006). This result is intuitive
and expected, and it supports decades of previous work that have
focussed on CVS as a key parameter in empirical mortality

models (Ryan and Reinhardt 1988; Woolley et al. 2012; Hood
and Lutes 2017; Grayson et al. 2017).

Immediate mortality was composed almost entirely of trees

with 100% CVS, whereas delayed mortality was dominated by
trees with lower CVS (Fig. S3). Mortality models based on
3-year mortality (such as FOFEM) are not well calibrated to

predict immediate mortality, as they will over-predict mortality
for trees with CVS ,100% (Fig. S3). The FOFEMSP models
more closely reflected the observed patterns in delayed mortal-
ity for most species, as to be expected because they were

parameterised based on 3-year mortality. We used 3 years as
the cut-off for delayed mortality to maintain consistency with
previous studies, although recent work has suggested that this

timespan may not be sufficient to fully capture all delayed
mortality (van Mantgem et al. 2011).

Although the FOFEMSP models had high individual-tree

accuracy, they under-predicted mortality at the stand level for
A. concolor, C. decurrens, and P. lambertiana by 2 to 18%
(Table 2, Fig. 2). A possible explanation for this is that the Sierra

Nevada experienced a multi-year drought from 2012 to 2015
(Belmecheri et al. 2016), and this may have exaggerated
mortality (e.g. Stephens et al. 2018). The extent to which fire-
related mortality was affected by the drought is impossible to

quantify for theYFDP, and a thorough analysis of the interactive
effects between bark beetles, drought, and fire on tree mortality
in the Sierra Nevada will require a multi-plot analysis that is

beyond the scope of this study. Other studies have found that
pre-fire climate appears to have a stronger influence on fire-
relatedmortality than does post-fire climate (vanMantgem et al.

2013), suggesting that the timing of the Rim Fire early in the
drought may have reduced the potential confound between
drought- and fire-induced mortality.

This reveals an important question: will mortality models

developed under non-drought conditions be useful in predicting
mortality for fires that occur in a future climate characterised by
greater drought stress? Although we cannot quantify the degree

to which drought influenced mortality, we found that mortality
models parameterised for past climates may under-predict
mortality when fire events are coupled with multi-year drought.

As climate warms and drought becomes more frequent, mortal-
ity models may need to be revised to reflect the modified
relationship between fire damage and mortality probability

under a drier climate. This may be done through re-parameter-
ising models using fires that burned during a drought (as in the
present study), or by explicitly including climatic variables as
independent variables (more challenging, but more adaptable).

Addressing this issue is a high priority for management-oriented
modelling research, as the suitability of existing mortality
models may decline as the co-occurrence of drought and fire

becomes increasingly frequent.
In contrast to the under-prediction of mortality for conifers,

the FOFEMRAmodel greatly over-predicted stand-level mortal-

ity ofC. nuttallii andQ. kelloggii by 5 to 32% (Table 2). Even for
stems with 0% CVS, the FOFEMRA model predicted a 72%
chance ofmortality forQ. kelloggii and 84% chance ofmortality
forC. nuttallii, but observedmortality was,10% for stemswith

0% CVS for both species (Fig. 2). This is consistent with
Kane et al. (2017) who found FOFEM over-predicted mortality
for three hardwood species (including Q. kelloggii). Our

observation that 70% of top-killed Q. kelloggii re-sprouted
post-fire indicates that aboveground stem death may not be an
appropriate measure of mortality for individuals of re-sprouting

species. Re-sprouting individuals have an important effect
on post-fire regeneration by rapidly sprouting new stems
that grow much faster than conifer seedlings post-fire, and

these sprouts maintain spatial pattern of the parent trees. Other
studies have observed this discrepancy between actual mortality
and top-kill (e.g. Catry et al. 2013), although most mortality
models are primarily focussed on top-kill. This result under-

scores the need to develop more species-specific models
for FOFEM, and the need to consider multiple types of
mortality for hardwoods.

Individual tree v. stand-level accuracy

Surprisingly, the high individual-tree accuracy did not always
translate into high stand-level accuracy, and this discrepancy
highlights the importance of multiple tests of model perfor-

mance. This was especially evident with the FOFEM models,
which generally performed well at the individual tree level but
had high stand-level error for some species and diameter classes.

Although this has been considered elsewhere (e.g. Hood et al.

2007; Belote et al. 2015), individual-tree accuracy dominates
the literature as the most widely used method for model para-
meterisation, validation, and comparison (e.g. Hood and Lutes

2017; Grayson et al. 2017). These results support the inclusion
of stand-level accuracy metrics in future model development as
this permits the explicit consideration ofmodel accuracy for rare

but important subpopulations such as large-diameter trees. The
disparity between individual and stand-level accuracy should
also be considered when using mortality models for stand-level

inference and management decisions such as post-fire salvage
harvest.

CVS :DBH interaction

Pre-fire models based on DBH alone were often more accurate
than the CVS-based models at the stand-level, most notably in
predicting mortality of A. concolor and large-diameter P. lam-

bertiana (Table 2). Although this may be partially explained by
the tight correlation between CVS and DBH (Fig. S1), DBH
should not perform better than CVS if it is primarily acting as a

proxy for CVS. An alternative explanation is that there could be
an interaction between CVS and DBH at large diameters that
is not captured by using CVS alone (McHugh and Kolb 2003;
Kolb et al. 2007). In other words, a small-diameter stem with

80% CVS may not have the same Pm as a large-diameter stem
with 80% CVS. The presence of a CVS :DBH interaction also
explains why stand-level accuracy was generally higher for the

CVSþDBH model compared with CVS alone.
Interestingly, despite the improved stand-level performance

of the CVSþDBH, AIC was best for CVS alone (all species

except A. concolor). Standard model selection procedures are
generally based only on AIC, and would therefore select the
CVS model without a DBH term (sensu Hood and Lutes 2017).
Although thismaximises AIC, our results demonstrate AIC does
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not necessarily correlate with stand-level accuracy, especially
for large-diameter trees. To maximise model accuracy across a
broad range of tree diameters, we suggest evaluating models

based on stand-level accuracy in addition to AIC, and including
a DBH interaction term to account for the known interactive
effects between CVS and DBH.

The high accuracy of the DBH model at the stand level
suggests that post-fire data may not be necessary to develop an
acceptable stand-level mortality model. However, as DBH does

not implicitly capture fire behaviour as CVS does, site-specific
fuel information (e.g. surface fuel loads) would have to be
incorporated to calibrate the model for use in different forests.
The resulting model would be similar to a CVS-based model

used in a pre-fire context, which relies on a separate model to
predict scorch height based on fuel levels. This would enable
users to assess mortality as a function of DBH rather than CVS,

and this may be useful for managers seeking to minimise (or
maximise) mortality for specific diameter classes.

A problem we encountered with the DBH models is that

standard logistic model forms did not represent the data well.
First-, second-, and third-order polynomial models all predicted
low Pm values (0 to 0.1%) at the large end of the diameter range

for all conifer species, whereas the data show the true proportion
of mortality was closer to 50% (Fig. S4, available as Supple-
mentary material to this paper). We expect the true probability
of mortality to be minimised for intermediate diameters and to

increase for trees at the upper diameter range (e.g. McHugh and
Kolb 2003). There are a few possible explanations for this:
large-diameter trees often have cavities and scars from previous

fires that can serve as an entry point for flames and embers and
can lead tomechanical failure (7 out of 20 immediatemortalities
.100 cm DBH were due to mechanical failure at a fire scar);

they often have large-duff mounds around the base that can
smoulder and cause prolonged soil heating at the root crown
(Varner et al. 2009), and they may be more susceptible to beetle
attack and drought post-fire (Hood and Bentz 2007; Kolb et al.

2007). Alternative approaches such as using constrained linear
regression to predict the proportion of mortality (based on
binned data) offer more control over the shape of the model

response curve (compared with logistic regression), and this
may result in models that more closely reflect the observed
shape of the DBH–mortality response curve.

Monotonic v. third-order polynomial models

The standard third-order polynomial CVS models predicted
individual-tree mortality with a high degree of accuracy, but the

CVSmono models improved individual and stand-level accuracy
for all conifers in this study (Table 2). Graphical representations
of these models demonstrate differences in the fundamental
shape of these two model forms (Fig. 2, S2). The third-order

polynomial models had a dip in Pm values in the middle of CVS
range whereas the CVSmono models had a steady increase (e.g.
P. lambertiana) or a slight plateau (e.g. A. concolor). Although

there may be a biological basis for a plateau in Pm at interme-
diate CVS levels, a negative relationship is biologically
implausible. Fitting monotonic models solved this problem

while still capturing the subtleties of the underlying data that
would have been lost by using a simple linear formula (e.g. low

slope at low CVS, steep slope at upper CVS). Additionally,
CVSmono models maintained high Pm for trees with 100%
CVS whereas rarefied CVS models reduced Pm, causing

the CVS models to under-predict mortality for trees with
100%CVS.Although the exactmonotonicmodels we generated
may not be broadly applicable to other sites as the position of the

inflection point (determined by the power of the polynomial and
the coefficients) may be highly susceptible to specific sites and
fire events, we suggest amonotonicmodel form as an alternative

if the common third-order polynomial model form results in a
non-monotonic fit. Monotonic CVSmodels were more accurate
at all scales, and they bear more relevance to the underlying
processes determining mortality.

Multi-scale accuracy

Stand-level accuracy was dependent on spatial scale for all
models. We were able to partition this error into two categories:
error due to small sample size (this error is represented by the

null models; grey regions in Fig. 3a–d) and spatially correlated
error (this error is represented by the coloured areas outside of
the grey regions in Fig. 3a–d). We were not able to identify the

mechanisms driving the spatially correlated error, but there are a
few plausible explanations based on the spatially explicit nature
of ecological processes that mediate delayed mortality. For

example, imagine two stands that were burned identically;
FOFEM will predict the same probability of mortality for each
tree, and the same proportion of mortality at the stand level. If
one of these stands experienced a bark beetle attack immediately

post-fire whereas the other stand did not, the FOFEM mortality
prediction will be too low for the stand that was attacked by
beetles (and too high for the beetle-free stand), resulting in

spatially correlated error. One could imagine a similar scenario
based on othermechanisms that mediate delayedmortality, such
as spatial variability of soil depth or moisture holding capacity,

or patchily distributed pathogens. Mortality models do not yet
include these mechanisms as input variables, but they implicitly
consider them by predicting mortality based on average mor-

tality rates. If a prediction is made for a large-enough area, these
spatially correlated factors will be integrated together and the
average mortality rates become a reasonable approximation.
However, the scale at which this happens must be fairly large as

we found spatially correlated error at all spatial scales up to the
maximum scale of our analysis (2.5 ha).

Spatial patterns

Restoring structural heterogeneity and spatial patterns to reflect
pre-fire suppression reference conditions is a frequent goal of
prescribed fire restoration efforts (North et al. 2009), but the

ability of mortality models to accurately predict change in
spatial pattern remains unstudied. We found that both point
pattern analysis and clump size analysis detected a change in

pattern post-fire, but point pattern analysis wasmore sensitive to
differences among modelled post-fire patterns. A likely expla-
nation for this is that our choice of a 6-m threshold for the clump

size analysis limits the scale of pattern detection to spatial scales
.6 m, and the greatest pattern dynamics we observed using the
point pattern analysis were at spatial scales 0 to 2 m. The clump
size analysis may be better suited to larger-scale pattern
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dynamics, which all mortality models predicted reasonably
well.

The point pattern analysis showed that the spatial pattern of

live trees became more aggregated post-fire, and the CVSmono

model predicted this with the greatest accuracy (Fig. 3f, g). The
FOFEM model and the DBH model were inaccurate at small

spatial scales, predicting increased dispersion rather than
increased aggregation post-fire. FOFEM accuracy improved at
scales .1.5 m, whereas the DBH model was inaccurate at all

scales 0–10 m.
The DBH model predicted a more dispersed (i.e. regular)

post-fire pattern because the model predicted that large-
diameter trees would survive and small-diameter trees would

die (Fig. S4). The resulting spatial pattern is therefore closely
based on the pre-fire spatial pattern of large-diameter trees,
which was more regular than the pre-fire pattern of small-

diameter trees. The CVSmodels, in contrast, use CVS,which is
an indirect measure of fire intensity and it therefore reflects
the spatial auto-correlation of fire behaviour and subsequent

mortality. In other words, small scale patterns in fire intensity
are driven by small scale heterogeneity in fuels, stand struc-
ture, and wind (Thaxton and Platt 2006; Hiers et al. 2009;

Loudermilk et al. 2012); and measurements of CVS implicitly
captured this patchiness. The mortality we predicted by the
CVS models was therefore spatially structured, resulting in a
predicted post-fire spatial pattern that closely reflects the

observed post-fire pattern.
The FOFEM models had poor spatial pattern accuracy at

small scales even though they are based on CVS. This was

because the FOFEMRA model greatly over-predicted mortality
of the two hardwood species (15% for C. nuttallii, 19% for Q.
kelloggii), and those species tend to be highly aggregated (Fig.

S5a, available as Supplementary material to this paper). This
resulted in amodelled post-fire spatial pattern that included very
few C. nuttallii or Q. kelloggii and was therefore much more
dispersed (Fig. S5b). The CVS-based models predicted hard-

wood survival more accurately, resulting in modelled spatial
patterns that more closely reflected the observed post-fire
pattern (Fig. 3f, g). This finding highlights the need to develop

species-specific mortality models for hardwoods which will
improve the spatial pattern accuracy of FOFEM.

Model validation with census v. sample datasets

TheYFDP dataset is unique among the datasets used in previous
mortality model validations, and many of the novel contribu-
tions of this study may be attributed to the representative nature

of this dataset. As the population of each species and diameter
class was a known quantity, wewere able to quantify percentage
error – a metric that easily translates to population-level pre-
dictions for a given forest stand. Although the data were

numerically dominated by small- and medium-diameter trees,
wewere able to quantify percentage error across the full range of
diameter classes, and this demonstrated the importance of using

stand-level metrics in addition to individual-tree accuracy when
comparing models. The spatial nature of the dataset allowed us
to determine the scales at which there was spatially correlated

error in model predictions, and to differentiate this from error
due to small sample sizes. We were also able to use mortality

models to predict change in spatial patterns, and we demon-
strated how this can be used to compare models.

Conclusions

The large sample size in this study allowed us to conduct a

detailed validation of FOFEMs for five species, and to evaluate
logistic mortality models in a few novel ways. The FOFEMSP

models had high individual tree accuracy, but they systemati-

cally under-predicted mortality at the stand level. Some of this
error is likely due to the timing of the Rim Fire in the middle of a
severe, multi-year drought. We showed that existing mortality
models may not be sufficient to accurately predict mortality

under future climates, and this may require re-parameterising
mortality models to capture the modified relationship between
CVS and mortality under drought conditions. The models we

developed in this study accomplish this for five species,
although we recommend validating these models with inde-
pendent data before they are applied in a management context.

The FOFEMRA model was inadequate for C. nuttallii and Q.

kelloggii, and accuracy may be improved by 15 to 21% (indi-
vidual accuracy, Table 2) by using the CVS models we created

(Table S1). Incorporating these species-specific models into
FOFEM will also improve community-level spatial pattern
predictions.

We compared five different locally-parameterised models

and found that there was no clear winner. Although CVSmodels
had high individual-tree accuracy, DBH models were often
more accurate at the stand level. Incorporating a DBH interac-

tion term into CVS-based models improved stand-level perfor-
mance, but the interaction term also introduced a considerable
decline in accuracy for stems at the upper limit of the DBH range

(e.g. A. concolor.100 cm DBH,Q. kelloggii.20 cm DBH, C.
nuttallii.5 cm DBH). The CVSmono models were generally the
most accurate according to both AIC and stand-level metrics,
but themonotonicmodel fitting procedurewe developed created

models with inflection points that may be less accurate when
validated with independent data. These results emphasise the
need to develop a stronger theoretical foundation for model

forms; model parameters should be chosen based on known
processes and interactions, and model forms should be con-
strained to biologically plausible relationships.

We found that stand-level accuracy improved with increas-
ing spatial scale, although 2.5 ha was not large enough to
eliminate spatially correlated error entirely. The spatial analy-

sis revealed the importance of spatial processes to fire-related
mortality, and it demonstrated that CVS captures some of
this spatial variability. This study not only provides robust
estimates of multi-scale mortality model accuracy for five

species – it offers a re-evaluation of the fundamental approach
(i.e. individual-level accuracy metrics and third-order polyno-
mial model forms) that have dominated empirical mortality

modelling for 30 years, and it reveals that existing models may
be inadequate for fires that occur during drought. Logistic
mortality models are well suited to individual tree predictions,

but evaluating accuracy with multi-scale performance metrics
and exploring alternative modelling approaches will enhance
our ability to model population and community level fire
effects.
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