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Abstract. Investigations of wildfire impact on water resources have escalated globally over the last decade owing to an
awareness of climate-related vulnerabilities.WithinAustralia, research into post-wildfire erosion has focusedonwater supply
catchments in the south-eastern region. Here, we examine post-wildfire erosion risk and its potential for water quality impacts

in a catchment in south-western Australia. The catchment of the Harvey River, which drains from forested escarpments onto
an agricultural coastal plain and into valuable coastal wetlands, was burnt by wildfire in 2016. The aims of this study were to
determine erosion risk across contrasting landforms and variable fire severity, using the Revised Universal Soil Loss

Equation (RUSLE), and to determinewhether post-firewater quality impacts could be detected at permanent rivermonitoring
stations located on the coastal plain. RUSLE outputs showed erosion hot-spots at intersections of steep terrain and high fire
severity and that these areas were confined to forested headwaters and coastal dunes. Monthly water quality data showed

conspicuous seasonal patterns, but that sampling frequency was temporally too coarse to pick up predicted event-related
effects, particularly given that the pre-existing monitoring sites were distal to the predicted zone of contamination.

Additional keywords: Peel–Harvey estuary, RUSLE, water catchments.

Received 1 August 2018, accepted 19 December 2019, published online 11 February 2020

Introduction

Water quality impacts from wildfire have been documented in

catchments globally across various fire-prone regions including
south-eastern Australia, the Mediterranean, South Africa, the
western United States of America and Canada (see for example

White et al. 2006; Rhoades et al. 2011; Smith et al. 2011a; Oliver
et al. 2012; Bladon et al. 2014; Dahm et al. 2015). Recent
wildfires in eastern Australia (proximal to the population centres
of Canberra and Sydney) have demonstrated the potential to elicit

adverse water quality responses. Water quality impacts include
increased suspended sediment, nutrient concentrations and other
constituents associated with fine sediment (Smith et al. 2011a).

These impacts can have adverse effects on aquatic ecosystems
and challenge water supply systems. In south-eastern Australia,
there has been a substantial investment in research programs

aimed at building capacity to predict post-fire erosion and asso-
ciated water quality impacts (AFAC 2017). In fire-prone forests
of south-western Australia, this research is lacking such that the

impacts of wildfire on the quality of water resources are unknown
and landmanagers have fewmeans to prioritisemitigation efforts.

Sources of pollutants in forested watershed catchments
include hillslopes, channels and floodplains as well as different

land-use activities and fire, either prescribed or wildfire. Differ-
ences in landform, soil, vegetation and rainfall regimes are all

likely to result in distinct post-fire response domains in terms of
frequency andmagnitude of erosion. A key factor is landform and
the degree of connectivity between hillslopes and streams. In the

eastern uplands ofVictoria, for instance, the dissected uplands are
characterised byhigh relief and long, steep slopes that converge in
first-order ephemeral drainage lines that are effective at deliver-
ing sediment from hillslopes to streams during runoff events

(Lane et al. 2006; Smith et al. 2011b). In contrast, the hillslopes in
the Hawkesbury sandstone escarpments near Sydney are largely
disconnected from streams owing to high infiltration rates in

colluvial deposits between cliffs and the stream network (Blake
et al. 2009). The Darling Ranges in south-western Australia
represent another distinct landform, with dissected low-relief

escarpments that drain onto a coastal plain.
The escarpments along the south-western coast of Australia

are heavily forested, receive reasonably high rainfall and form

important catchments for water supply reservoirs, irrigation and
wetlands on the coastal plains. Within the escarpments, the
forested catchments deliver high water quality to streams and
thus help support aquatic ecosystems that are unique to this
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region (Bunn and Davies 1990). These high-value catchments

have experienced declining water yield since 1975 due to
ongoing rainfall deficit that may be linked to climate change
in the region (Hope et al. 2006). The decline in surface water has
seen the region becoming increasingly reliant on groundwater

(McFarlane et al. 2012). However, surface water and catchment
management remain critically important; the numerous large
reservoirs that are used to supply Perth, the major population

centre of Western Australia, and surrounding regional commu-
nities with water receive catchment water but also treated
groundwater and desalinated water that is pumped into them

as holding capacity. Furthermore, the water that reaches the
coastal plains is used directly for irrigation and ultimately ends
up in wetlands and estuaries that are of high ecological, social
and economic value (Hale and Butcher 2007). Erosion in the

escarpments may affect all these values through increased total
suspended sediment (TSS) and turbidity but also increased
concentrations of dissolved constituents (Armstrong et al.

2005) associated with post-wildfire erosion. On the Swan

Coastal Plain, fire-impacted organic-rich wetland sediments

have been shown to generate a plume of acidic metal-rich
shallow groundwater that can also have downstream conse-
quences for users and receiving environments (Blake 2013).

In January 2016, a large and intense wildfire, the Waroona

wildfire, burnt 69 165 ha of forested and agricultural landscapes
in the Harvey Catchment south of Perth, Western Australia, and
destroyed 181 dwellings, 166 of which were in the historic town

of Yarloop (Ferguson 2016) (Fig. 1). The wildfire is said to have
started from lightning strikes and burnt over the course of
several days, mostly during extreme fire weather on the first

day when temperatures were 378C with wind gusts exceeding
50 km h�1 (McCaw et al. 2016). Fanned by north-westerly, then
north-easterly winds, the fire initially burnt through jarrah forest
(Eucalyptus marginata) in the escarpment before entering the

coastal plains and burning through irrigated agricultural land,
ultimately reaching wetlands and dune systems on the coast
itself. The potential for post-fire impacts on both soil erosion and

water quality represents a management issue for water supply
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Fig. 1. Map of the Swan Coastal Plain and Darling Ranges region showing the dune and lakes system to the west, the plains themselves with their intensive

network ofmajor drains (lower catchment region), the escarpment (centre and east), and the reservoirs of the upper catchments (upper catchment region). For the

purposes of this study, the escarpment forms the boundary between the lower and upper catchment regions of theHarveyRiver basin. Insert (a) shows a regional

perspective of the study site; the extent of theWaroona 2016 fires and the burn severity distribution and place names are also shown. Insert (b) shows the location

of the historical water quality (WQ) sampling sites (solid black stars; 1¼ site no. 6131335, 2¼ site no. 613014, 3¼ site no. 613027, 4¼ site no. 613052, 5¼ site

no. 613053, 6 ¼ site no. 613031). Insert (c) shows the distribution of the erosion field sampling sites (solid black squares).
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reservoirs, as well as coastal dune systems and the Peel–Harvey
Estuary that together make up a significant Ramsar-listed suite
of wetlands (Hale and Butcher 2007).

Models for predicting soil erosion are an essential decision-
making tool for the rapid allocation of erosion mitigation
measures following fire. Although empirical soil erosionmodels

such as theUniversal Soil Loss Equation (USLE) and the revised
version, RUSLE, were initially developed for agricultural
applications, over time, their use has been adapted to forested

catchments (e.g. Rulli et al. 2013; Karamesouti et al. 2016). The
advantage of RUSLE over other empirical, semi-empirical and
physicalmodels is its simplicity, as it requires less field data than
other models. When implemented within geographic informa-

tion systems (GIS) and remote sensing (RS) technologies,
RUSLE provides rapid, albeit coarse, post-fire estimations of
annual soil erosion. RUSLE has been found to be suitable as a

rapid measure of determining high-erosion-risk areas and for
determining the effectiveness of mitigation (Vieira et al. 2018).

Set against this background and the likelihood of similar

events occurring again in the future, this study explores the risk
of enhanced erosion and reduced water quality caused by wildfire
in the Darling Ranges of Western Australia in the Harvey River

catchment. The specific aims in the present study were to first
parameterise the RUSLE (Renard et al. 1991) and determine
erosion risks across contrasting landforms (escarpment, dunes
and coastal plains) and the variable fire severity in the Harvey

catchment. The second aimwas to determinewhether fire impacts
could be detected at pre-existing river monitoring stations where
water quality parameterswere beingmeasured at regular intervals

before and after the wildfire, and to see whether this could be
related to the RUSLE outputs.

Methods

Study area

Situated in south-western Australia (see Fig. 1a), the Peel–

Harvey Catchment encompasses all the lands that drain into the
Peel–Harvey Estuary. This includes the catchments of the
Serpentine, Murray and Harvey rivers and covers an area of

,11 300 km2, incorporating two distinct geological provinces
across which the fire burnt, namely the Archaean Yilgarn Block
of the upper catchment to the east, and the lower catchment

situated on the Perth Basin to the west. The upper catchment
comprises two geomorphic units, the Darling Plateau and the
Darling Scarp. The lower catchment has three geomorphic units,

the Swan Coastal Plain, Pinjarra Plain and Ridge Hill Shelf.
The Darling Scarp runs approximately parallel to the coast.

Inland, the upper ‘slopes’ of the Darling Plateau are gradual
inclines of no more than 10%, but on the escarpment itself, there

are steep (up to30%), but relatively short hillslopes. The elevation
of the Scarp is ,100 m above mean sea level. The upper
catchment largely comprises Archaean granite–gneiss rocks with

intrusions of dolerite, typically overlain with laterite (Playford
et al. 1976). TheRidgeHill Shelf, situated at the base of the Scarp,
consists of slopes formed by colluvium and has a surface layer of

ferruginous, cemented laterite (Davidson 1995). The Pinjarra
Plain is primarily of alluvial origin comprising a series of clay
overlain with leached sands (Davidson 1995). From this plain to
the coast, the Swan Coastal Plain is composed of a series of

aeolian deposits of dune systems (Quindalup, Spearwood and
Bassendean Dunes), arranged approximately parallel to the coast
and decreasing in geological age (late Pleistocene to Holocene)

east to west where they continue to form. The dune systems
consist of coloured sands, with leaching representative of their
geological age, ranging from pale-grey (highly leached) to

yellow–brown (slightly leached) to white siliceous (Quindalup)
closer to the coast (McArthur and Bettenay 1974).

The Darling Scarp is predominantly remnant jarrah

(Eucaluptus marginata) and marri (Corymbia calophylla) open
forests. Wetter areas contain bullich (Eucalyptus megacarpa)
and blackbutt (Eucalyptus patens) stands. The plateau is mostly
state forest that has been subject to periodic timber harvesting;

bauxite mining is also undertaken in the region, leading to
fragmentation of the forest ecosystem. In the area of thewildfire,
the Scarp is a mixture of state forest (jarrah forest, wandoo

(Eucalyptus wandoo) woodland and shrubland), water catch-
ments for reservoirs, and freehold land that has largely been
cleared for cattle grazing and town sites. Substantial quantities

of annual grasses, both native and introduced species, are grown
on the Scarp and lower catchment regions.

The Swan Coastal Plain is characterised by low-relief topog-

raphy. As largely freehold land, it has been extensively cleared
for a range of agriculture practices including beef production,
dryland and irrigated cropping, and horticulture. Original
vegetation included woodlands of Eucalyptus, Banksia and

Allocasuarina with Melaleuca predominant in wetlands and
swamps. Much of the remaining vegetation is highly fragmen-
ted, degraded and subject to invasive annual grasses.

The fire history of the upper catchment is reasonably well
known (Peace et al. 2017). Remnant forest areas have not been
subject to fire for several decades, with fuel age dating back to

the last time broad-scale aerial fuel reduction burning was
undertaken in the late 1980s and early 1990s. The exception
was a small fire (111 km2) in 2006 that affected several
rehabilitated mine sites (McCaw et al. 2016). The burn history

of the lower catchment is less well known. Bushland to the east
and south of the Waroona town site was burnt by an unplanned
fire in January 2015 (McCaw et al. 2016). A small bush remnant

in the Yarloop town site was subjected to a prescribed burn in
May 2015. The bushland areas surrounding State-owned pine
plantations, adjoining the Forrest Highway, have been subjected

to prescribed burning. Yalgorup National Park had not experi-
enced a fire for more than 20 years (McCaw et al. 2016).

The region has a mediterranean-type climate with hot dry

summers (December to March) and cool wet winters (June–
August) (see Fig. 2). The region has a long-term average annual
rainfall of ,700 mm near the coast, increasing to 1000 mm on
and about the Scarp and then decreasing to ,400 mm at the

eastern boundary of the catchment. The winter rainfall provides
flow for the three major river systems Serpentine, Murray and
Harvey and their associated tributaries. The Serpentine and

Murray flow to the Peel inlet and the Harvey River flows into
the Harvey Estuary at its southern end (Kelsey et al. 2011).
These rivers and their tributaries originate on the Darling

Plateau and are well-defined watercourses that traverse the
plateau and dissect the Scarp. As these watercourses reach the
Swan Coastal Plain, they intersect with numerous wetlands and
floodplains and are less well defined (Hale and Butcher 2007).
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Using RUSLE to map erosion risk

The application of RUSLE in this study was based on the

premise of providing a rapid post-fire estimation of erosion risk
areas within the burnt catchment. The objectives were to iden-
tify spatial variability in erosion risk and to determine how

landscape attributes (e.g. slope, rainfall erosivity) and fire
severity contribute to that variability. There are insufficient data
from SW Australia to parameterise a physical-based model. To

this end, the availability of data dictated model selection and
parameterisation.

Burn severity calculation

Burn severity was estimated using the delta Normalized

Burn Ratio (dNBR). This is a multitemporal change detection
method differencing multispectral single-band indices. Landsat
8 Operational Land Imager (OLI)-derived NBR data calibrated

for surface reflectance (30-m resolution) were obtained courtesy
of the United States Geological Survey (USGS) Earth Resources
and Science Centre (EROS). The NBR indicates which areas of

a landscape were burnt, as well as the severity of the burn, using
the equation NBR ¼ (NIR – SWIR)/(NIRþ SWIR) where NIR
is the near-infrared band and SWIR is the short-wave infrared
band (Key and Benson 2006). The difference between the pre-

fire (15 December 2015) and post-fire (17 February 2016) NBR
scenes was calculated to determine the severity of the burn
relative to the pre-existing condition of the landscape (Key and

Benson 2006). Each pixel was assigned to a burn severity cat-
egory based on those proposed by Key and Benson (2006). Field
verification of burn severity classifications occurred in March

2016. Ten sites per severity classification were identified and

field measurements of fire severity assessed using indicators

derived from Parson et al. (2010) and Keeley (2009).

RUSLE parameterisation

This section describes an approach to modelling post-fire

erosion risk using the RUSLE, a soil-loss model used for
determining hillslope erosion rates. Rulli et al. (2013) produced
a version of this model based on the original one developed by

Wischmeier and Smith (1965) and revised by Renard et al.

(1997) for determining post-fire soil loss from a defined
catchment in a mediterranean climate. RUSLE has also been

used in other studies from burnt areas (Fernández et al. 2010;
Karamesouti et al. 2016; Sankey et al. 2017).

Soil loss (A), in tonnes per hectare per year (in t ha�1 year�1),
in the RUSLE is calculated from rainfall erosivity (R), soil

erodibility (K), slope and drainage area (LS) and land cover (C).

A ¼ R � K � LS� C ð1Þ

The equation was implemented at a spatial resolution of 30m.
An overview of the data input for RUSLE can be seen in Table 1.

Rainfall erosivity is the erosive force of rainfall. It is defined
as the intensity and amount of rainfall experienced in a particular
region. Erosivity is defined as the mean annual sum of storm

erosion index values (EI30), which is a measure of the storm
kinetic energy and the maximum 30-min rainfall intensity.
Accordingly, such rainfall measurements must be recorded at
temporal intervals of less than 30 min.

Daily rainfall datawere obtained for 23Bureau ofMeteorology
(BoM) (2018) and 10 Department of Primary Industries and
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rainfall for the Bureau of Meteorology climatological station in Waroona. Mid-term rainfall data are typical of

those used in the RUSLE model. Monthly streamflow in the 1-year post-fire period in relation to long-term

(1975–2016) and pre-fire (2011–15) annual mean monthly stream flows.
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Regional Development (2018) monitoring sites within or sur-
rounding the burnt area, with rainfall data spanning the years

1990–2016. EI30 values for each month (j), bEj� �
were estimated

following the method proposed by Lu and Yu (2002) using the
equation:

bEj ¼ a 1þ Z cos 2pf j�$ð Þ½ �
Xn

d¼1
R
b
d whenRd > R0 ð2Þ

where Rd denotes the daily rainfall amount, R0 the threshold
rainfall amount to generate runoff, and n is the number of days

with rainfall amount in excess ofR0 in themonth, and a,b, Z and
v are model parameters. The sinusoidal function with a funda-
mental frequency F ¼ 1/12 is used to describe the seasonal
variation of the coefficient, that is, seasonal variation of rainfall

erosivity for a given amount of daily rainfall. The parameterv is
assigned a value of p/6, indicating that for a given amount of
daily rainfall, the corresponding rainfall intensity is highest in

January, when the temperature is the highest for most regions of
the (Australian) continent (Lu and Yu 2002). It is noted that, in
the region, most rainfall occurs during winter but these rains

have a reduced capacity to initiate significant erosion compared
with intense summer rains. During winter, rainfall, which is
more frequent but of lower intensity, has time to infiltrate the

soil profile, thus reducing the capacity to generate soil runoff.
As recommended by Lu and Yu (2002), R0 was set to 0 mm,
therefore, parameter b ¼ 1.49 and parameter Z ¼ 0.29, and
parameter a was calculated as follows:

a ¼ 0:369 1þ 0:098 exp 3:6c=MRð Þ½ � ð3Þ

where MR corresponds to mean annual rainfall and C corre-
sponds to mean summer rainfall (November to April).

To account for natural climatic variation, the calculation of
both EI30 andR-factor values requires continuous (uninterrupted)

daily rainfall data over many years (20 years according to
Wischmeier and Smith 1978), which was not the case with the
data obtained for some sites. Where rainfall measures were

reported following accumulation over 2–5 days, rainfall was split
evenly between the days. For BoM sites with missing daily
rainfall data and where these sites were situated within close
proximity to Department of Agriculture and Food, Western

Australia (DAFWA) sites, DAFWA daily rainfall measures were
used where there were missing BOM data for those years. For
years in which EI30 values were calculated for 9–11 months,

values for themissingmonthswere interpolated via tension spline
(weight ¼ 5, number of points ¼ 5; negative values set to 0)
(Mitášová and Mitáš 1993). Lastly, the historic R-factor surface

was generated by taking the mean of the yearly R-factor values
calculated at each respective sitewith.15 years of data (n¼ 16),
and interpolating the values across the study area via tension

spline (weight ¼ 5, number of points ¼ 5). Owing to a flooding
event in December 2012 in which .100 mm of rainfall was
recorded at Harvey resulting in extreme EI30 and R-factor values,
an additional R-factor layer was generated excluding 2012 from

each site’s historicmean calculation. Rainfall erosivity (R-factor)
ranged between 500 and 1188, with the histogram showing a
strong binomial distribution that matches the orographic features

of the study area; lower values were experienced on the Swan
Coastal Plain, and higher values on the escarpment. Generally,
rainfall increased from west to east (Fig. 3).

Soil erodibility (K-factor) was determined for unburnt soils.
Although K-factor parameters may be affected by fire, this was
not taken into account in applying the RUSLE in this study, as

we were interested in comparative rather than absolute erosion
values. TheK-factor was calculated using the equation proposed

Table 1. List of RUSLE factors and subfactorswith columns describing themethods, data sources, details of data (equation, source, date, resolution,

etc.) and references related to each factor

DAFWA, formerly Department of Agriculture and Food Western Australia, now Department of Primary Industries and Regional Development; n/a, not

applicable

Factor Sub-factor Methods Data source Details Reference

Rainfall erosivity (R) n/a Calculated using storm ero-

sion index from 25 years

continuous monthly rainfall

data

Bureau of Meteorology 23 rainfall data sites within

and surrounding burn area

Lu and Yu (2002)

n/a As above DAFWA 10 rainfall data sites within

or surrounding burn area

Soil erodibility (K) Texture (five classes) DAFWA Soil landscape map Auerswald et al. (2014)

Permeability (five classes) DAFWA Soil landscape map

Organic content (five classes) CSIRO ASRIS (Australian Soil

Research Information

System)

Soil structure (five classes)

Slope (LS) Length Terrain analysis Department of Water

and Environmental

Regulation

10-m-resolution digital

elevation model

Pelton et al. (2014)

Steepness Slope steepness is the ratio of

the actual slope to an

experimental slope of 9%

Cover management DAFWA Land-use Map Land use categories, burn

severity classes

Panagos et al. (2015);

Bonilla et al. (2010);

Hartcher and Post (2005)
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by Auerswald et al. (2014), which expands Wischmeier and
Smith’s K-factor equation (Wischmeier and Smith 1978) adjust-
ing for extreme values in silt content, soil erodibility, organic

matter and rock fragments. The parameters required for the
equation were mass fraction as a percentage of

(a) very fine sand and silt,
(b) clay, and
(c) organic matter in the fine earth fraction;

(d) soil structure index,
(e) permeability index, and
(f) fraction of the soil surface covered with rock fragments.

Parameters (b), (c) and (f) were derived from the relevant
National Soil and Landscape Grid National Soil Attribute Maps
(NSAMs) (,90-m spatial resolution) (Viscarra Rossel et al.

2014). The NSAMs use existing digital soil maps to calculate a
variance-weighted mean for each pixel. As the K-factor only
relates to the top 15 cm of the soil profile (Pringle et al. 2013),

the 0–5- and 5–15-cm NSAMs attributes were used in calcula-
tions. As the NSAMs contain organic carbon values and not

organic matter (parameter (c)), each pixel with an organic
carbon value within the K-factor layer was multiplied by 1.72
as suggested by Wischmeier et al. (1971).

Parameter (e) was derived from soil subsystem data supplied
by DAFWA using the attribute that describes the capacity of the
soil to transmit water based on the least permeable layer in the
top 50 cm of the soil profile. Permeability index values were

assigned to each DAFWA permeability class based on those
listed by Landcom (2004). Each polygon was then assigned a
permeability index valueweighted by the proportion of each soil

type present in that polygon.
As the NSAMs contain information for sand and not fine

sand (parameter (a)) as required in the RUSLE, parameter (a)

was derived from both the NSAMs and DAFWA soil data. For
each soil type within each DAFWA layer, the soil code was
matched with those listed by Schoknecht and Pathan (2013).

Where soil types were reported by Schoknecht and Pathan
(2013) as consisting of fine sands (with or without other
textures), it was assumed that all of the sand within these soil
types could be classed as fine sand. A new percentage fine sand
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layer was generated by multiplying the percentage of fine sand
soil types within each (rasterised) polygon of the DAFWA soil
data by the NSAM percentage of sand for each pixel.

As soil structure data (parameter (d)), as used by Lu et al.

(2003), were not readily available, a uniform value of 3 was
applied across the study area. Lu et al. (2003) show that the

assigned class is representative of major soils having medium to
coarse aggregates with diameters between 2 and 10 mm.

Soil erodibility (K-factor) values ranged between 0.01 and

0.79, and the histogram of data was also binomial; for this factor,
the lower values, constituting most of the data points, were from
the escarpment and the irrigation district beyond its footslopes,
whereas the higher values were from the sands of the

Swan Coastal Plain, particularly the dune areas closer to the
coast (Fig. 3).

The length–slope factor (LS-factor) is a unitless measure of

the contribution of slope length and steepness of angle for each
cell. The LS-factor was calculated based on the method by
Pelton et al. (2014) using the equation derived by Moore and

Burch (1986) as follows.

LS ¼ mþ 1ð Þ As

22:13

� �m
sin bð Þ

sin 5143�ð Þ
� �n

ð4Þ

As is the area of the cell with a width of 25 m; 22.13 is the

standardised length [L] of a RUSLE cell; m and n are adjustable
cell coefficients relating to soil variants and erosion factors
respectively.

Length and slope (LS-factor) values ranged from 0 to 23.5.
The overwhelming majority of values were low, exemplifying
the generally flat terrain of the Swan Coastal Plain. The highest

values (also seen as a small peak in the histogram) were seen on
the escarpment itself, demarcating the western edge. The dune
system at the coast appears as three faint bands parallel to the

coast (Fig. 3).
The land cover factor (C-factor) layer was derived from the

DAFWA land-use dataset, with estimated values assigned to
each land use based on values developed by Panagos et al.

(2015). Australian Land Use and Management (ALUM) classi-
fications were matched with the most similar land uses listed by
Panagos et al. (2015) based on description and desktop-based

visual inspection of high-resolution RS imagery, with the
middle value of the C-factor range from Panagos et al. (2015)
applied to each respective ALUM class. The C-factor is repre-

sentative of the land cover, including native vegetation, planta-
tions and crops and their management and how this land cover
might vary in erosion rates when compared with bare, tilled soil
(Kinnell 2010). Values are assigned to land cover types and

range between 0 and 1, with 1 representing high erosion
potential associated with bare, tilled soil (Renard et al. 1997).

As no land uses listed by Panagos et al. (2015) were close

matches with the ALUM subcategories ‘Production forestry’
and ‘Plantation forestry’, the C-factor values for these land uses
were estimated based on those listed by Bonilla et al. (2010) and

Hartcher and Post (2005).
The cover management factor was modified to include the

effects of the burn. Change in burn severity (dNBR) ranged

between –2 and 2. More severe fire is shown on the western area

of the escarpment, and another patch among the dune systems
closer to the coast. Between and around these areas were less
severe burns. In fact, most (97%) dNBR values were in the range

0–0.5, indicating low-severity burns; values less than 0.1 typi-
cally indicate unburnt conditions. The histogram shows a
skewed distribution with a low burn severity median value for

the majority of the burnt area (Fig. 4).
The change in burn severity, or change in the NBR, was

used as an input to the C-factor. Burn severity was factored into

the C-factor layer based on values used by Terranova et al.

(2009) for different burn severity classes. The burn severity
layer was reclassified, in which pixels with a high burn severity
were assigned a value of 0.2, moderate–high burn severity a

value of 0.1, moderate–low burn severity a value of 0.05 and
low burn severity a value of 0.01. This layer was merged with
the C-factor layer to produce the final post-fire C-factor layer.

Themaximum pixel value from either of the merged layers was
retained in the final post-fire C-factor layer. Cover (C-factor)
values, after taking into account fire severity, ranged between

0.01 and 0.3, mainly reflecting where native vegetation has
been cleared or converted to land for pasture and grazing on the
Swan Coastal Plain and in the irrigation areas. Peaks of

frequencies occurred around the low- and medium-cover
management values; smaller peaks occurred at low–medium
and high values, with the latter reflecting the vegetated areas
on the western escarpment and in the dune system at the

coast (Fig. 4).

Model evaluation

The outputs from RUSLE were examined to determine if the
predicted erosion rates were consistent with observations of
post-fire erosion at the hillslopes scale. There are no data

available for the Harvey catchment. However, studies of
background erosion rates and fire impacts elsewhere in the
region can provide some insights into the reliability of the
predictions. A field survey was carried out to determine

the degree with which RUSLE represents differences in ero-
sion potential quantified from a rapid visual field assessment
technique developed by Morris et al. (2014). Fifteen sample

sites were selected to cover a range of erosion potentials as
predicted by RUSLE and based on accessibility (see Fig. 1c).
At each sample site, 10 locations were sampled, and classified

into one of five erosion categories ranging from 0 (least
erosion) to 5 (most significant erosion). The coordinates for the
initial location at each site were chosen randomly, and then

nine further sites were selected at least 30 m apart (as the
spatial resolution of the RUSLE is 30m), aligned parallel to the
hillslope. Locations situated below roads were not chosen
because of their interference on surface runoff processes. The

median of the 10 locations was then correlated with the mean
RUSLE output (t ha�1 year�1) for the sampled area.

The relationships among RUSLE, slope and burn severity

were examined to determine how these variables contribute
to variation in erosion risk. Fire severity was classified into
four categories (unburnt: typically –99 to 100), 2 (low severity:

101–350), 3 (moderate severity: 351–500) and 4 (high
severity: .500). Slope was subdivided into five categories
(all values in degrees): 0–5, 6–10, 11–15, 16–25, .25.
The mean of RUSLE outputs was calculated for all
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combinations of these categories. The effect of slope and

dNBR on RUSLE predictions was quantified with an ANOVA
inMatlab. The residuals of the RUSLE were normally distrib-
uted when using the untransformed data in the ANOVA, so no

transformation was necessary.

Water quality sampling

Impacts of wildfire on water quality were assessed using data
collected from six monitoring stations within the Department of
Water and Environmental Regulation’s extensive monitoring

network (Department of Water and Environmental Regulation
2018). Samples were collected following standard protocols
outlined in Department ofWater (2009a, 2009b). The sites were
selected because theymet the criteria of having at least 5 years of

continuous pre-fire water quality data and continuous post-fire
data for 2016. Table 2 presents the characteristics of the six sites
and their catchments, showing that four of the sites had all or part

of their catchments burnt. Three of these were nested within the
Harvey River Catchment, which was monitored near the outlet.

Two control catchments were entirely outside the burn area

and not hydrologically connected to surface waters directly
impacted by the wildfire.

Concentrations of total nitrogen (TN), total organic nitrogen

(TON), ammonia/ammonium-N (abbreviated to NH3), nitrate
and nitrite (NOx), total phosphorus (TP), and soluble reactive
phosphorus (SRP), together with physicochemical parameters

of temperature, dissolved oxygen, pH andTSSswere analysed at
all of these stations (which were always sampled at the same
time of day).

These pre-and post-fire data were analysed by comparing
means for each parameter at each site using Welch’s t-test. A
principal component analysis for each site was performed to
determine whether together all the measured parameters were

indicating a pre-fire to post-fire shift in multivariate space.
Following this, each parameter was analysed separately using
multiple linear models, in which each measurement was stan-

dardised and its deviation from the site averaged, and plotted
over time.
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Results

Erosion risk from RUSLE and field validation

Pre-fire RUSLE output (i.e. dNBR set to 0) can be seen in
Figure 5a. Post-fire, the RUSLE produced values that ranged
from 0 to 94.5 t ha�1 year�1 (Fig. 5b). Parts of the burn area with

higher RUSLE values (.1 t ha�1 year�1) are the ridges of two
dunes in the coastal areas, the western portion of the escarpment,
and patches of the hinterland forested areas east of the escarp-

ment in the Darling Ranges. When compared with unburnt
conditions (Fig. 5a), these impacts of the wildfire on RUSLE in
these areas are visible. In general, themost widespread change is
a shift in erosion risk from values of the order of 0.01–0.1 t ha�1

year�1 to 0.1–1 t ha�1 year�1. There are localised areas
where the erosion risk has shifted two orders of magnitude, from
0.01–0.1 to 1–10 t ha�1 year�1.

Data from the erosion field survey were summarised for each
site by the median erosion category among the sampled loca-
tions. These most typical erosion conditions of the site could

then be related to the corresponding RUSLE prediction to
evaluate model performance in terms of providing an indication
of erosion susceptibility (Fig. 6). The results show an exponen-

tial relationship between erosion categories (from Morris et al.
2014) and the RUSLE predictions. Erosion categories ranging
from 0 to 2.5 correspond with erosion rates ranging from
,0.05 to 1 t ha�1 year�1. The exponential relationship suggests

that erosion magnitude scales non-linearly with the erosion
categories from Morris et al. (2014). In fact, for the
equation relating the RUSLE prediction and erosion category

(Ecat) (RUSLE ¼ 0:023e2:26Ecat ) (Fig. 6), each erosion category
corresponds to an order of magnitude increase in RUSLE
estimates. This result is reasonable because the categories

discriminate between erosion types that represent threshold
shifts, which are associated with large changes in erosion rates
(e.g. rainsplash to interill, and interill to rill erosion).

Factors controlling the spatial patterns in erosion risk

When the variation in post-fire erosion risk, shown as a function
of slope and fire severity, is split according to the strongly
bimodal distributions of soil erodibility (K) and rain erosivity

(R) factors (Fig. 7), three inferences can be made. First, in areas
with steep slopes, there is a strong non-linear effect on erosion
risk with fire severity, where predicted erosion is higher. Further

analysis, using analysis of variance, confirms slope as the first-
order control on erosion risk (Table 3). Second, the soil erod-
ibility K in the sand dunes is substantial, yielding an order of
magnitude larger erosion risks (Fig. 7a v. Fig. 7b). Third, the

effect of differences in rainfall erosivity (R) between the
escarpment and flood plain is almost negligible compared with
the influence of slope.

Water quality: historical pre-fire v. post-fire comparison

Using the subcatchments where water quality data were col-
lected pre-and post fire, data revealed differences in mean slope,

mean fire severity andmeanRUSLEoutputs calculatedwith and
without fire (Table 4). Reference subcatchments were con-
firmed (showing no differences with and without fire); each of

the four test subcatchments had elevated outputs post fire, where
the magnitude of differences for RUSLE outputs with and
without the fire (dA) was mostly proportional to mean fire
severity (Table 4).

A comparison of nutrient and suspended solids concentra-
tions between pre-fire and post-fire monitoring at each of the six
sites demonstrates that the differences between pre-fire and

post-fire concentrations are minimal for nearly all parameters at
all sites (Fig. 8); only a few exceptions to this general rule are
apparent. For both the reference sites, both sites entirely within

the burnt area and one of the sites downstream of the burnt area,
some nitrogen variables were different at the 0.05 level of
significance (Fig. 8). The similarities in nutrient and suspended

Table 2. Characteristics of water quality monitoring sites used for pre-fire v. post-fire comparisons

The table shows the design criterion for each site, its latitude and longitude, along with characteristics of the subcatchment that is drained to the site. The total

area is given in kilometres squared; and area and land-use categories drawn from Department of Water Peel Harvey Catchment Nutrient Report 2015 Update

2017 data sheets: Conservation and Natural (CN), Plantation (P), Grazing (including beef and dairy cattle, mixed) (G), Built (including housing, industry,

roads) (B). Percentage of the subcatchment burnt is calculated from the area of the burn extent that intersects with each individual catchment area

Design criterion

burnt/unburnt

Site Latitude, longitude Total area of

subcatchment

(km2)

Area (km2;% in parentheses) land

use categories

% of sub-

catchment

burntCN P G B

Site within burn

area – test

WIN 613014 – Samson

North Drain

�32.8948S, 115.8528E 194 125 (64) 0.4 (0.2) 47.8 (24.4) 17.2 (9.6) 90

Site within burn

area – test

WIN 613053 –Meredith

Drain

�32.92058S, 115.7678E 56 20 (36) 8.5 (15) 26.3 (47.3) 0.5 (0.9) 95

Site downstream of, but

outside burn area – test

WIN 6131335 – Drakes

Bk – Waroona Drain

�32.8358S, 115.8188E 107 57 (53) 0 41.3 (39.1) 4.3 (4.0) 42

Site downstream of, but

outside burn area – test

WIN 613052 – Harvey

River outlet

�32.8178S, 115.7368E 415 172 (42) 9.5 (2.3) 200.9 (48.7) 9.9 (2.4) 61

Site outside burn area –

reference

WIN 613027 – Coolup

South Main Drain

�32.7678S, 115.7728E 114 34 (30) 0 75.6 (66.1) 2.2 (2.0) 0

Site outside burn area –

reference

WIN 613031 –Mayfield

Drain

�32.8028S, 115.7468E 120 16 (13) 0 99 (83.1) 2.8 (2.3) 0
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solid concentrations, even for these nitrogen variables, given
that they were recorded for all sites irrespective of where they
were located in relation to the fire, suggest that the monthly

water quality monitoring has not detected an effect of the fire.
These interpretations are supported by the principal compo-

nent analysis (PCA): in multivariate terms, and including the

physicochemical parameters (for example Fig. 9), the post-fire
values were not distinct from the pre-fire values. Looking at
each parameter separately shows that the variability encoun-

tered post fire cannot be readily distinguished from the variabil-
ity experienced pre-fire.

Discussion

Both measured and modelled erosion rates in undisturbed for-
ests in Australia are typically in the range 0.01–0.1 t ha�1 year�1

(Lu et al. 2003; Lane et al. 2006; Tomkins et al. 2007; Hancock

et al. 2017) and RUSLE has been shown in the past to reproduce
these values with reasonable accuracy (Lu et al. 2003). In our
implementation of the RUSLE, the erosion rate in the forested

headwaters and vegetated coastal dunes is typically,0.1 t ha�1

year�1, indicating that the model is performing well. The fire

effect on erosion is represented through adjustments to C, which
is a factor representing vegetation cover. Although there is a
distinct lack of region-specific C-factor data for this study, the

use of values for vegetation in similar climates provided com-
parable C results with other similar studies. Typically, in the
forested headwaters, the burn effect resulted in C changing from

,0.028 (in the absence of fire) to 0.1 (moderate severity) or 0.2
(high severity). This change in C has meant that modelled ero-
sion rates increase by a factor of 3.5 or 7 for moderate- and high-

severity fire respectively. In the forested headwaters and coastal
dunes, this change in erosion potential due to wildfire has
resulted in modelled erosion rates of 0.1–5 t ha�1 year�1 for
hillslopes typical of the area. On the coastal plains, the LS factor

was very low (owing to flat terrain) and hillslope erosion was
therefore negligible irrespective of fire, with the exception of the
dune system near the coast, because the dunes have moderate

slopes with sandy, poorly structured soils that are prone to
erosion if denuded of vegetation by fire.

The modelled post-fire erosion rate on hillslopes is relatively

low compared with the modelled post-fire erosion rate using
RUSLE in other studies where values for the post-fire erosion

(a) Pre-wildfire RUSLE erosion risk

(b) Post-wildfire RUSLE erosion risk

Fire extent
RUSLE (t ha–1 year–1)

N

0–0.01

0.01–0.1

0.1–1

1–10

10–100
0 10 20

km

Fig. 5. RUSLE output (t ha�1 year�1) for the Peel–Harvey catchment (a) without, and (b) with fire. White areas

indicate ‘no data’.
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rate were modelled for moderate slopes. Karamesouti et al.
(2016), for instance, reported the post-fire erosion on hillslopes
with a gradient of 8–15% was 80.4 t ha�1 year�1, which is an

order of magnitude higher than modelled post-fire erosion for
similar slopes in the present study. Terranova et al. (2009) found
that 30–40% of an area had modelled post-fire erosion rates

.7.5 t ha�1 year�1 after fire. In our study, the area with
modelled erosion rates .7.5 t ha�1 year�1 was very small,
partly owing to the large proportion of coastal plain but also

owing to relatively low modelled erosion rates on hillslopes
above the plain. In contrast, the range of modelled post-fire
erosion rates and the modelled impact of the fire are very similar
to the values reported by Rulli et al. (2013).

Erosion was not monitored so a quantitative test of the
accuracy of predictions made with RUSLE is not possible this
way. However, themodelled erosion rates can be compared with

the measured erosion rate values from hillslope experiments
elsewhere. In small catchments (0.2–0.3 ha) with similar attri-
butes to those in the headwaters of the Harvey River, the erosion

rates after the 2009 catastrophic Black Saturday Fire in south-
eastern Australia were 7–10 t ha�1 in the first year after the fire
(Noske et al. 2016). These values are in the upper range of the

typical erosion rate modelled on steep hillslopes in theWaroona
burn area. On small plots (8 m2), Blong et al. (1982) measured
erosion rates between 2.5 and 8.2 t ha�1 year�1 in the first year
after fire in sandstone geology. This rate is in the upper range of

our modelled results. The study by Blong et al. (1982), however,
concerns erosion on small plots, and scale effects (see for
example Amore et al. 2004 and Parsons et al. 2006) mean that

their values are therefore likely to be higher than hillslope-scale
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erosion predicted by RUSLE. The range of modelled values in
our study is very similar to those modelled with RUSLE (0.5–
5 t ha�1 year�1) andmeasured on small plots (0.5–3 t ha�1 year�1)

in the Warrumbungles by Yang et al. (2018). In summary, it
appears that the RUSLE produces reasonable predictions of
hillslope erosion under unburnt conditions, but that it may

underestimate erosion in areas where slopes are steep and fire
severity high. The tendency for RUSLE to underestimate has
been documented in other work (Larsen and MacDonald 2007)
and may be due to fire-related changes in soil erodibility, K,

which are not captured in the model. In a relative sense, the
assessment of erosion severity using the method of Morris et al.
(2014) indicates that RUSLE is effective at discriminating

between areas of different erosion risk. Hillslopes with low
erosion predictions showed few signs of erosion, while locations
with comparably high RUSLE predictions displayed significant

erosion, including sheetwash and rills.
In this study, we implemented RUSLE in a manner that will

predict annual erosion and not individual erosion events. By

implementing it this way, and including monthly rainfall varia-
tion, we represent variation; important elements of the regional
rainfall regime that cause high-magnitude erosion events were
highlighted. Using this approach, there appears to be a quite

modest increase in predicted fire-induced erosion, compared
with what has been predicted and/or measured in other Austra-
lian locations. However, this requires validation through field

trials of post-fire sediment flows. The water quality measure-
ments on the coastal plains collected during a 1-year period
following the burn also suggest that the impacts of fire were

relatively low. However, given the episodic nature of post-fire
erosion, our approach to modelling and measurement may
underestimate post-fire impacts. The magnitude of a post-fire

erosion/yield event is dependent on the interaction of several
factors such as fire severity, vegetation type, soil type and
topography. Variability in erosion due to stochasticity in rainfall
within the burnt landscape is particularly important (Shakesby

and Doerr 2006; Robichaud et al. 2007; Cannon et al. 2010;
Moody 2012). Through the rainfall erosivity parameter, RUSLE
incorporates the long-term average effect of rainfall events on

erosion. However, the model does not predict individual erosion
events, where erosion rates are often dictated by thresholds
associated with short bursts of intense rainfall. Thus, by using

long-term monthly rainfall erosivity, our approach to modelling
erosion with RUSLE is likely to underestimate the erosion
produced in the case of an intense rainfall event. Recent
developments in modelling rainfall erosivity offer opportunities

for improved representation of event-based erosion rates (Yang
et al. 2018). Additionally, RUSLE, by its very design, does not
consider connectivity between eroding hillslopes and down-

stream waterways. The model indicates the exposure of catch-
ment to erosion, but is limited in its ability to predict impacts
beyond the hillslope scale, where hillslope and channel coupling

is important (Smith and Dragovich 2008; Smith et al. 2011c).
Similarly, the results from thewater quality sampling are subject
to issues related to the episodic nature of post-fire water impacts.

The sampling approach, whereby samples were collected at
regular intervals, may have missed important events that
occurred between sampling campaigns. The wildfire signals in
water quality parameters are often tightly coupled to the runoff-

generating mechanism (Murphy et al. 2018). A more targeted
event-basedwater quality sampling regime and hillslope erosion
experiment are needed to obtain more robust estimates of fire

impact water quality parameters. Despite these limitations, the
results from the RUSLE model (Fig. 5) and associated analyses
(Figs 6 and 7) provide the first insights into wildfire impacts on

erosion and water quality in SW Australia. It is an important
contribution that will help in understanding the spatial distribu-
tion of erosion risk and help to prioritise mitigation and future
research activities.

Table 3. Result from analysis of variance with fire severity (dNBR,

delta Normalized Burn Ratio) and slope as independent variables and

RUSLE output as the dependent variable

sq., squares

Factor Sum sq. d.f. Mean sq. F-statistic Prob.F

dNBR 19 172 3 6391 134 572 0

slope 119 086 4 29 772 626 930 0

slope� dNBR 51 344 12 4279 90 100 0

Error 662 619 13 953 464 0

Total 922 034 13 953 483

Table 4. Characteristics of sites used for pre-fire v. post-fire compar-

isons, and post-fire measurements

The table shows the design criterion for each site, mean slope derived from

RUSLE input data, mean dNBR (delta Normalized Burn Ratio) (fire

severity). Mean RUSLE output (t ha�1 year�1) without and with the fire is

produced by manipulating the cover parameter in the equation. dA is the

difference pre- and post-fire, derived as the difference between the two

Design crite-

rion burnt/

unburnt

Site Mean

slope

Mean

dNBR

Mean RUSLE

output (t ha�1

year�1)

dA

Without

fire

With

fire

Site outside

burn area –

reference

WIN 613027 –

Coolup South

Main Drain

0.76 0 0.04 0.04 0

Site outside

burn area –

reference

WIN 613031 –

Mayfield

Drain

1.19 0 0.05 0.05 0

Site down-

stream of, but

outside burn

area – test

WIN 613052 –

Harvey River

outlet

3.20 0.281 0.065 0.149 0.085

Site down-

stream of, but

outside burn

area – test

WIN

6131335 –

Drakes Bk –

Waroona

Drain

3.84 0.15 0.07 0.12 0.05

Site within burn

area – test

WIN 613014 –

Samson

North Drain

4.04 0.41 0.06 0.2 0.14

Site within burn

area – test

WIN 613053 –

Meredith

Drain

0.99 0.24 0.06 0.11 0.05
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An important oversight in our understanding of post-fire
response was the coastal system, where RUSLE indicates
erosion risk is very large. High erosion rates were predicted

for the dune ridges and adjacent freshwater wetland systems at
the coast. Our original focus was on what we perceived were the
important water resources of the escarpment and the Darling

Ranges, like the reservoirs, the irrigation infrastructure on the
Swan Coastal Plain and the likely impact they were to have on
flows and inputs for the Harvey Estuary. The aquatic ecosys-

tems, such as the freshwater wetland systems, close to the coast
deserve closer attention, and the RUSLE outputs provide uswith
the evidence needed to add to our foci for such a study.

The data fromwater qualitymonitoring stations point to the fact

thatmonthly snapshot sampling is temporally too coarse to pick up
subtle and event-related effects of fires on water quality. Added to
this, the locations of the pre-existing sites were distal to the

escarpment where fire intensities, slopes and rainfall erosivities
were higher, thereby distal to the zone of contaminant production,
resulting in a lower likelihoodof detecting an effect. Post-fire high-

magnitudewater quality events tend to be episodic with quite short
time scales ofminutes to hours (Cannon et al. 2010;Moody 2012),
requiring continuous monitoring at strategic locations to aid in

their detection. More importantly, RUSLE (empirical models),
while proven to accurately predict erosive response in a catchment,
may not fully capture hydrological responses. Vieira et al. (2018)
have shown that semi-empirical and physical models may bemore

accurate in predicting water contamination and warrant further
investigation in low-relief catchments.

The hydrology of the Swan Coastal Plain adds complexity to

sampling for post-fire water quality impacts. The low relief,
porous sands, land use and the direct hydrological connection
with groundwater mean that trying to discern a post-fire water

quality signal is complex and requires a multifaceted approach
to sampling methodology. This is particularly the case where a
signal may be more subdued and interspersed with water quality
signals from agriculture, such as nutrient exports (McKergow

et al. 2003) or other disturbance events. Typically, most post-
fire erosion modelling is done at the hillslope scale in moderate-
to high-topographic-relief catchments. Little, if any work has

been done post fire in low-relief landscapes and the interface
between hillslope and coastal plain.

Understanding contaminant movement throughout catch-

ments in the south-west of Western Australia must not ignore
the numerous contaminant pathways, including overland flow,
streamflow infiltration and groundwater interaction. Importantly,

and related to the Swan Coastal Plain, we did not investigate the
quality of groundwater. Future investigations could compare pre-
v. post-fire records for existing regularly monitored groundwater
bores in both the lower and upper catchments of the region.

Conclusion

The wildfire in 2016 in the catchment of the Harvey River in
south-western Australia raised immediate questions about its
impact on water resources. The ability to quantify overland

sediment movement throughout a catchment, coupled with
sediment and nutrient transport withinwaterways, will provide a
model for identifying critical resources that require protection
and for informing fire management practices. The existence of

remote sensing data for burn severity, land capability data for
modelling soil erosion, and routinely collected water quality
monitoring data provided an opportunity to undertake a post-fire

investigation of this impact.
Overall, RUSLE modelling predicted patchy erosion, con-

sistent with a moderate hillslope catchment experiencing a

mediterranean climate, and yielding movement of moderate
sediment loads compared with more mountainous catchments
elsewhere in Australia. Nevertheless, hot-spots of erosion were

predicted for intersections of steep terrain and high fire severity
that were confined to two particular landforms: forested head-
waters and coastal dunes.

We anticipated water quality impacts in the upper catchment

would reflect the rainfall interaction with the burnt landscape,
and show elevated nutrients levels and higher total suspended
solids. While water quality data showed conspicuous seasonal

patterns, sampling frequency was temporally too coarse to
detect the nature, magnitude and frequency of post-fire erosion
events. This was particularly so given that the monitoring sites

were determined well before the fire, and were distal to the zone
of contamination predicted by hot-spots in the RUSLE outputs.
We did not anticipate the high erosion in coastal dunes and we

were unable to consider associated water quality impacts due to
an absence of regularly monitored surface water and groundwa-
ter in the vicinity of the hot-spots.

Application of the RUSLE in this study identified deficien-

cies in available data for the factors used to predict post-fire
catchment erosion. In particular there is a lack of post-fire
vegetation, soil data, and patterns of fire frequency and the

drivers of burn severity that are particular to the south-west
region of Western Australia. Added to this is the unique
geomorphological setting of the region: the interplay between

a topographically subdued and ancient escarpment, a broad
coastal plain and active dune systems on the coast itself. Future
modelling, addressing these features, particularly given an
awareness of climate-related vulnerabilities, is warranted.
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