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Abstract. Alpine vegetation of the Himalaya is used as food, medicine or fodder, and is commonlymanagedwith fire by
agropastoralists. Prescribed fire can have positive effects on rangeland biodiversity, but studies evaluating its effects in

alpine shrublands are scarce. Our objective was to examine the effects of anthropogenic fire on biophysical characteristics,
species richness, abundance and composition in an alpine shrubland with socioeconomic value to local peoples in
Langtang National Park in central Nepal. We surveyed biophysical variables, vascular plant species richness and

composition along three transects at ascending elevations, and conducted interviewswith local people and park officials on
the use of fire in the region.We found 69 species of vascular plants in 89 plots; species richness was greater in burned plots
andwith increasing elevation, with 13 species unique to burned plots.We identified 14 indicator species in both burned and

unburned plots; eight of themwereHimalayan endemics. In burned plots, the indicator specieswere predominantly grasses
and perennial forbs with ethnobotanical uses. This is the first detailed study on alpine shrubland anthropogenic fire in the
Nepalese Himalaya. Burning may, at least temporarily, replace woody with more palatable herbaceous species, and

weaken the elevational gradient of the shrubland.
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Introduction

Fire has historically imposed intense human-induced alterations
in landscapes (Thomas and McAlpine 2010), but can also
increase plant species richness (Fox 1981; Peterson and Reich
2007) and support livestock grazing by initiating the regenera-

tion of tender and palatable grasses (Mark andHoldsworth 1979;
Mark 1994). Fire is also a natural disturbance process that can
have a positive role in rangeland and ecosystem management

and biodiversity conservation (Carlson et al. 1993; Sheuyange
et al. 2005; Brandt et al. 2013; Davies et al. 2014), influence the
maintenance of community structure and function, and suppress

as well as foster successional processes (Chapin and Van Cleve
1981; Chapin 1983; Shang et al. 2007; Barros et al. 2017).
Variable fire severities and frequencies occur across landscapes

depending on several biotic and abiotic factors, such as topog-
raphy, wind speed, temperature, precipitation and fuel load, as
well as combustion type (smouldering v. flaming), stand com-
position and developmental stage of plant species (White et al.

1996; Bigler et al. 2005; Bond and Keeley 2005; Collins et al.

2007;Harris and Taylor 2015). As a function of these factors, the
burn patterns vary regionally or within one landscape, resulting
in patches of burned and unburned areas with different shapes,
sizes and severities (White 1979; Bond andKeeley 2005). Forest

gaps created by fires naturally go through a dynamic process of
shifting floristic composition initiated by competition for
resources, mostly light, moisture and nutrients (Huston and

Smith 1987). It can alter plant species composition and richness
by exposing and changing soil properties and providing space
for the establishment of pioneer and r-strategist type species,

with shorter life span, such as, herbs and shrubs in the case
of plants (Wesche 2006; Binelli et al. 2008; de Villiers and
O’Connor 2011).

Absence of fire for many years in fire-dependent ecosystem
leads to change in species composition. For example, suppression
of fire for many decades in dry conifer forest in California has led
to a dramatic increase in shade-tolerant and fire-intolerant
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species, outcompeting shade-intolerant species that are also fire-
tolerant woody species (Parsons and DeBenedetti 1979; Habeck
1994). Similarly, woody plant encroachment in semiarid and arid

rangeland of Australia and Africa in the absence of fire is a
common problem that has resulted in loss of biodiversity and
affected livestock production (Watkinson and Ormerod 2001;

Price and Morgan 2008; Archer 2010).
The alpine shrubland of Nepal is a region with rapidly

changing climate that is likely to experience shifting vegetation

structure (Gaur et al. 2003; Telwala et al. 2013; Salick et al.

2019), and is also managed with the use of anthropogenic fire to
provide social and economic value to local peoples. Wildfires
are common in Nepal in all physiographic zones during the dry

period fromMarch toMay every year (Matin et al. 2017). Out of
30 220 fire hotspots recorded in Nepal between 2000 and 2013,
7283 (24%) occurred in alpine pastures during the hot and dry

season (Parajuli et al. 2015). Approximately 50–58% of wild-
fires in Nepal are set deliberately by locals to enhance regenera-
tion of grasses for pasture and hunting, clearing land for

cultivation, and for firewood and non-timber forest product
(NTFP) collection (Fig. 1a, b) (Karkee 1991; Bajracharya
2002; Matin et al. 2017). Along with their essential ecological

roles, alpine shrublands contribute socioeconomic benefits to
the local people. For example, people in the Himalaya use alpine
Rhododendron and Juniperus species for incense, medicine and
fuel, and for shelters for migratory pastoralists grazing their

herds (Schmidt-Vogt 1990; Lama et al. 2001; Bhattacharyya
2011). The combined effects of human activities such as
grazing, cutting (logging/looping) and trampling decrease the

ecosystem’s natural resiliency after fire (Folke et al. 2004).
Thus, the ecosystem may become more vulnerable to subse-
quent impacts and the previous dominant vegetation communi-

ties may not return with similar diversity or composition.
Beginning approximately 50 years ago, the residents of

Langtang National Park observed changes in the composition
of vegetation due to fire (personal interviews with local agro-

pastoralists, July 2011). Elders recall that the south-facing
forests above Chandanbari and below Lauribina Hill were
dominated byAbies spectabilis (D. Don) Spach (east Himalayan

fir). Intense fire and the felling of trees for fuel wood and timber
has since nearly cleared the forest stands on southern slopes and
allowed the spread of shrub species such as Piptanthus nepa-

lensis (Hook.) Sweet (evergreen laburnum) and Berberis aris-

tata DC. (Indian barberry), and herbaceous species such as
Euphorbia wallichii Hook. f. (Wallich spurge) and Sambucus

adnataWall. ex DC. (east Himalayan elderberry) (Fig. 1c, d). In
high-elevation areas,Rhododendron anthopogonD.Don (dwarf
rhododendron) and R. setosum D. Don (bristly rhododendron)
shrubs form several dominant stands with lush mosses with

occasional large R. campanulatum D. Don (bell rhododendron)
and Sorbus microphylla (Wall. ex Hook. f.) Wenz. (small-leaf
rowan) shrubs overtopping the smaller shrub stands. However,

fire can fragment the continuous vegetation starting from the
tree line up to the alpine rhododendron shrubland (Fig. 1e, f).

Globally, the body of research on the effects of fire in forest

ecosystems of commercial value is extensive (Risser 1990;
Williams et al. 1994; Bigler et al. 2005; Bond and Keeley
2005; Collins et al. 2007), but studies evaluating the effects of
fire in alpine shrublands are relatively meagre (Knox and Clarke

2006) and non-existent in Nepal. Most fires above timberline in
mountainous regions are severe (Wesche 2006; Williams et al.
2008), which tends to hold true in Himalayan shrublands

dominated by aromatic plant species such as Rhododendron

and Juniperus. Sclerophyllous shrublands are particularly sus-
ceptible to fire because they are typically dry, and may secrete

flammable secondary chemicals (Christensen 1985). The low
stature and single physiognomic type of shrublands commonly
leads to intense crown fires (Christensen 1985). The alpine zone

in the Nepal Himalaya belongs to the Western and Eastern
Himalayan alpine shrub and meadow ecoregion (Olson et al.

2001). This region is known for having high species richness and
supporting a large number of rare, endemic and threatened

species (Shrestha and Joshi 1996; Basnet 2006), the majority
of which are important from socioeconomic and cultural per-
spectives in addition to their conservation significance (Olsen

and Larsen 2003; Ghimire et al. 2006, 2008; Salick et al. 2014).
Patches of shrubs in alpine meadows are found facilitating the
growth of grasses, forbs and many other important herbaceous

species, either by providing suitable habitats or by protecting
them from herbivores (Jacquez and Patten 1996; Körner 2003;
Li et al. 2011). The mosaic – composed of sub-alpine and alpine

meadows, shrublands, high-elevation agropastoral fields, for-
ests and a large range of other habitats – is high-elevation
Himalayan landscapes inscribed by human activities (Ghimire
et al. 2006). Their biodiversity is shaped by the interaction

among geological, climatic and topographical factors, cultural
traditions and modern land-use impacts.

Studies in the Himalaya are important for understanding how

traditional ecological knowledge and practices related to pasto-
ralism are influencing and interacting with alpine shrublands,
and how social and climatic developments will impact alpine

zone ecology and the socioeconomic futures of the local people.
The biodiverse alpine environments in the Himalaya are among
the habitats experiencing themost drastic global climate change,
with increasing temperature, a heavier and more unpredictable

rainfall pattern, and rapidly melting permanent snows and
glaciers. Research in the Himalaya suggests that the warming
climate has already caused alpine plants and their habitats to

shift upslope towards higher elevations (Gaur et al. 2003;
Telwala et al. 2013; Salick et al. 2019). Such shifts are
continually changing the communities of high-elevation

regions, outcompeting threatened and endemic plants and even-
tually pushing the vital alpine life zones to extinction as they
reach ridge tops. Climate change that threatens alpine plants also

affects the traditional practices and livelihood of both indige-
nous peoples and massive downstream populations (Salick and
Byg 2007; Salick et al. 2014).

The objective of the present study was to examine the effects

of anthropogenic fire on biophysical variables, species richness,
abundance and composition in an alpine shrubland with social
and economic value to local peoples in Langtang National Park

in the northern region of central Nepal. Specific research
questions included: (1) do biophysical factors vary between
burned and unburned plots; (2) do plant diversity, frequency and

composition vary among burned and unburned plots; and (3) are
species used by locals as NTFPs enhanced by anthropogenic
burning? To address our objective and research questions, we
sampled plots across a narrow elevational gradient of alpine
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shrubland that burned in 2009 from anthropogenic causes, and
interviewed local agropastoralists with first-hand knowledge of

the ethnobotanical importance of species within the alpine zone.

Methods

Study area

The study area (28805.3710 to 28805.6600N longitude and

85823.3370 to 85823.5170E latitude) is located on Lauribina

Danda (danda is hill in Nepali) in the lower alpine zone of
Langtang National Park (LNP) in the northern part of central

Nepal (Fig. 2). LNP covers subtropical to alpine climatic con-
ditions owing to high elevational variation. The northern aspect
is cool and moist while the southern aspect is warmer and drier.

LNP receives an annual precipitation of 650 mm (Langtang
station, 3920 m above sea level (a.s.l.)) to 1800 mm (Dhunche
station, 1950 m a.s.l.). Most of the precipitation occurs during

the summer monsoon season, which lasts from June until the

(a) (b)

(c) (d )

(e) (f )

Fig. 1. In Lauribina Danda’s alpine zone (.3900m), besides livestock grazing, local people use these shrublands

for extracting different resources, including harvesting of medicinal plants (a), and firewood collection (b). Intense

fire and the felling of trees for fuel wood and timber in the Chandanbari area (3200m above sea level (a.s.l.)), below

Lauribina Danda in Langtang National Park has nearly cleared the forest stands on southern slopes (c), and allowed

the spread of woody and herbaceous species such as Piptanthus nepalensis (Hook.) Sweet (d). Fire has fragmented

the continuous vegetation starting from the forest line up to the alpine rhododendron shrubland (e), leaving amosaic

of fire-affected and unaffected shrub patches (f).
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beginning of October. Average maximum temperature was

238C in June and average minimum temperature was ,28C in
January.

The study area has 20–358 slopes with aspects ranging from

3108 north-west to 308 north-east. Because sampling covered a
small geographical area with plots only in the northern aspect
with almost constant slope to minimise the effect of topographic
variation, it is unlikely there was a difference in the amount of

radiation received in burned and unburned patches. The study
area was above the tree line, with amosaic of habitats dominated
by grassland and shrubland. The tree line varies within 3900–

4000 m a.s.l., with Abies spectabilis and Betula utilis D. Don
(Himalayan birch) in the overstorey and Rhododendron campa-
nulatum and Sorbus microphylla in the understorey. The latter

two species reach up to 4200 m a.s.l. Above forest line in lower
reaches of the alpine zone (.3900–4200m a.s.l.), the vegetation
comprises vast stretches of shrubland dominated by Rhododen-

dron anthopogon, R. lepidotum Wall. ex G. Don (pink scaly

rhododendron) and R. setosum on the northern aspects. Other

woody species in the lower alpine belt include Rhododendron

campanulatum, Juniperus recurva Buch.-Ham. ex D. Don
(Himalayan juniper), Berberis spp., Ephedra gerardiana Wall.

ex Stapf (Gerard jointfir), Spiraea arcuata Hook. f. (arching
spirea), Salix spp. and Potentilla fruticosa L. (shrubby
cinquefoil) (Chaudhary 1998; SK Ghimire, S Thapa-Magar,
MR Shrestha, B Devkota, MR Gubhaju 2008, unpubl. data).

The alpine grassland and shrubland in the study area are used
by local agropastoralists for grazing livestock and collecting
plants for local use. There were altogether three alpine shelters

of stone construction (goth in Nepali) in the Lauribina area,
which are used during the summer grazing season for shelter and
rest for pastoralists, and keeping livestock temporarily. The

herders traditionally managed the pastoral land through rota-
tional grazing of livestock, and seasonal burning of vegetation
(Karki and McVeigh 2000). As the study area was included

under the protected area system in 1976, any unauthorised

0
N

India

Nepal

China

Bhutan

Langtang National Park

115 230 460 km

Fig. 2. Map of Nepal showing the study area on Lauribina Danda, which is located in the lower alpine

zone of Langtang National Park (LNP) in the northern part of central Nepal at 28805.3710–28805.6600N
longitude and 85823.3370–85823.5170E latitude.
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anthropogenic fire and illegal or haphazard harvesting of natural
resources are subject to a certain degree of regulation. However,
the national park acknowledges the traditional practice of

subsistence use of natural resources. In interviews, local agro-
pastoralists stated that the Lauribina area has received random
and infrequent fire to enhance the growth of palatable species

since the establishment of the national park.

Vegetation sampling and data collection

Sampling took place within the alpine rhododendron shrubland
of Lauribina Danda, in June 2011, 2 years after an,100 ha fire
in 2009. Within the perimeter of the fire, a patchy mosaic was
created with high-severity fire killing the majority of above-

ground biomass in the burned matrix, but with numerous
unburned patches completely escaping fire and absent of fire
scars (mean unburned patch size 2893 m2) (see burn mosaic

Fig. 1f ). The timing of the fire was determined via field obser-
vations in 2009, through subsequent interviews with local
agropastoralists (n¼ 10) from the surrounding villages, and was

verified on NASA satellite imagery (NASA 2009).
Three parallel transects (each 500–700 m in length) were

established paralleling the slope contour: lower summit transect

(T1) at 3900 m a.s.l., mid-summit transect (T2) at 4000 m a.s.l.,
and upper summit transect (T3) at 4100 m a.s.l. In addition to
positioning perpendicular to the elevational gradient, the trans-
ects were concomitantly perpendicular to the dominant

shrub biomass gradient, with the girth (cm) of burned stumps
declining with increasing elevation (girth mean � s.d.: T1 ¼
25.80 � 19.65, T2 ¼ 6.37 � 1.08, T3 ¼ 3.42 � 0.65 cm).

Each of the three transects was divided into three segments in
burned matrix and three segments in unburned shrub patches.
Within each segment, plots were systematically placed starting

,5 m from the matrix or patch margin and extending to ,5 m
from the next matrix or patch margin, maintaining a 20–30-m
distance between successive plots. A total of 89 plots were
sampled, 49 burned and 40 unburned (T1 ¼ 17 burned, 14

unburned plots; T2 ¼ 16 burned, 14 unburned plots; T3 ¼ 16
burned, 12 unburned plots). At each plot, we recorded geograph-
ical position (latitude and longitude) using a global positioning

system, soil pH using a pH meter, and soil moisture with a
moisture-reading electrode (Takemura Electric Works DM-15
soil tester).

In each plot, we sampled vegetation in three 1-m2 quadrats
oriented diagonally, which were further divided into four
(0.5 � 0.5 m) subquadrats. In total, 267 quadrats (1 m2) and

1068 subquadrats (0.5 m2) were sampled across all 89 plots.
Within each subquadrat, the team recorded presence or absence
of all vascular plant species. If a species was present in all four
subquadrats, it was assigned a categorical abundance value of 4.

If a species was present in three out of four subquadrats, it was
assigned a categorical abundance value of 3, and so on. Vegeta-
tion data fromquadrats was pooled by plot for analysis purposes.

We identified as many species in the field as possible following
published resources (Polunin and Stainton 1984; Ghimire et al.
2008) and authors’ personal expertise on alpine plants. Botani-

cal vouchers were deposited at Tribhuvan University Central
Herbarium, Nepal, where field identifications were later con-
firmed. In each quadrat, we also recorded the percentage cover
of each of the following biophysical variables: exposed soil,

rocks, dead wood, litter, graminoids (including grasses, sedges
and rushes), forbs, shrubs, trees, mosses and lichens, as well as
the total number and girth of burned stumps.

We interviewed local agropastoralists (n¼ 10) about the use
of plant species recorded in the study area and their palatability
for herbivores. We specifically asked whether specific sampled

plants are used by local residents, and if used, for what purpose.
We also reviewed ethnobotanical literature (for example, Lama
et al. 2001; Manandhar 2002; SKGhimire, S Thapa-Magar, MR

Shrestha, B Devkota, MRGubhaju 2008, unpubl. data) to verify
the use of the plant from other regions. In the case of species
consumed by livestock, we asked respondents to rank the
palatability. Following Daalkhaijav (2005), we categorised the

palatability into preferred, desirable, consumed but less desir-
able, not consumable and toxic.

Both verbal andwritten consents were obtained for the study.

Written permission for fieldwork was obtained from the author-
ities at LNP and Buffer Zone, and at the Department of National
Park and Wildlife Conservation, Government of Nepal. Prior

verbal informed consents were obtained from the local commu-
nities in Chandabari and Lauribina within LNP before establish-
ing participation and consultation of local agropastoralists.

Data analysis

Mann–Whitney U Tests (non-parametric) were conducted using
SPSS v.17 (SPSS Inc. Released 2008. SPSS Statistics for Win-

dows, Version 17.0) to compare biophysical data between
unburned and burned plots, because the biophysical data did
not meet the assumptions of parametric tests even after

transformation.
Species richness, a-diversity or the number of vascular plant

species per unit area, was calculated for each plot. A second

measure, g-diversity or the number of vascular plant species in
unburned patches and the burned matrix, was also calculated.
We used two-way ANOVA in Stata v.15 to compare vascular
plant species richness at the plot scale between unburned and

burned plots and among the three transects (i.e. upper, mid and
lower elevations) and their interactions. Post-hoc Tukey Honest
Significant Difference tests were conducted to compare pair-

wise differences among burned and unburned plots within and
among transects.

Prior to running both the multiresponse permutation proce-

dure (MRPP) and two-way cluster analyses, species frequency
in each plot was square-root-transformed and species found in
less than 5% of the plots were discarded. We used MRPP

(Biondini et al. 1988;McCune et al. 2002; Cai 2006) to examine
species compositional differences among burned and unburned
plots and transects. We performed MRPP on species frequency
in each plot for combined datasets, and burned and unburned

plots separately and transects separately. MRPP was performed
using PC-ORD v.7 (McCune and Mefford 1999) using the
Sorensen distance measure.

Two-way cluster analysis was run using PC-ORD v.7

(McCune and Mefford 1999). For the cluster analysis, species
frequency was relativised by the columnmaximum, the distance

measure was Sorensen, and a flexible b linkage method with a
value of �0.25 was selected.

The presence and abundance of key indicator plant species
(Dai et al. 2006) are biological characters of groups of sites
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representing habitat types or combinations of habitat types and

are of prime interest for ecosystem conservation and manage-
ment (Legendre and De Cáceres 2013). Thus, we used the
indicator value method (IVM) (Dufrene and Legendre 1997)

to determine the indicator species for burned and unburned plots
within the three transects. Those species with high indicator
values are the indicator species (McCune et al. 2002; Dai et al.
2006).We usedPC-ORD v.7 (McCune andMefford 1999) and a

Monte Carlo test with 4999 permutations (McCune andMefford
1999) to test the statistical significance of indicator values (IV).

Results

Biophysical variables

The unburned and burned plots significantly differed for 10 out
of 12 variables sampled (Table 1). Unburned plots showed
significantly greater cover values for tree (8.24 v. 0.10%), shrub

(40.56 v. 2.54%) and moss–lichen (56.24 v. 32.69%), with
Rhododendron campanulatum, R. anthopogon, R. setosum and
R. lepidotum contributing the main shrub cover. Burned plots

showed significantly greater cover values for graminoids (14.65
v. 7.97%), dead wood (15.95 v. 2.47%) and exposed soil (2.06 v.
0.82%) compared with unburned plots. Unburned and burned
plots also differed in terms of edaphic properties. Soil in burned

plots had higher pH (6.84 v. 5.65) and lower moisture (4.77 v.

7.97) compared with unburned plots (Table 1).

Species richness

Total vascular plant species richness (g-diversity) varied from
55 species in unburned patches to 62 species in the burned
matrix (altogether, 69 species; see Supplementary material

Table S1 for the list of species recorded, their elevation range
and local use). At the plot level, the two-way ANOVA resulted
in an R2 ¼ 0.585, and fire (F-value ¼ 8.97, P ¼ 0.004) and

transect (F-value ¼ 55.98, P , 0.001) both had significant
effects on species richness, while the interaction effect was not
significant (F-value ¼ 2.49, P ¼ 0.089). The mean vascular
plant species richness was significantly greater in the burned

than in the unburned plots at all three transect elevations

(P , 0.05, Fig. 3). The species richness significantly increased
along the elevational gradient from lower to upper transect,
indicating that elevation was a statistically significant variable
affecting vascular plant species richness (Fig. 3).

Species composition

The MRPP showed statistically significant compositional dif-
ferences between burned and unburned plots (P , 0.001) and

also between transects (P, 0.001) (Table 2). Multiple pairwise
comparisons showed that burned plots in all three transects and
unburned plots in Transects 1 and 3 and Transects 2 and 3 had

significant compositional differences (P, 0.001 for all pairwise
comparisons). In unburned plots, Transects 1 and 2were broadly
overlapping and thus the hypothesis of no difference between

groups could not be rejected. In addition, within each of the three
transects, burned and unburned plots had significantly differing
compositions (P , 0.001 in T1 and T2, P , 0.05 in T3).

The two-way cluster analysis exhibited distinct clustering by

transect (Fig. 4). There were two major groups of plots, one
completely composed of plots from Transects 1 and 2 (regular
and inverted triangles), and one that included all plots from

Transect 3 (boxes), 10 plots from Transect 2, and 3 plots from
Transect 1. Within the group composed of Transects 1 and 2,
burned and unburned plots were largely separated into different

subgroups, with the majority of burned plots coming from
Transect 1. In addition, the 13 plots from Transects 1 and 2 that
were grouped with the plots from Transect 3 were predomi-
nantly burned plots from Transect 2. These burned plots from

Transect 2 continued to support Rhododendron anthopogon, as
root sprouts, and had an equivalent number of burned stumps
(mean 74.7) to all burned plots together (Table 1). Thus, before

fire, plots in Transect 2 were dominated by large shrubs-like
plots in Transect 1.

Table 1. Biophysical variables recorded in unburned and burned plots

Reportingmean� s.e.P-value is based onMann–Whitney U test, indicating

that the medians are significantly different between unburned and burned

plots

Variables Unburned Burned P-value

Soil pH 5.65� 0.03 6.84� 0.01 ,0.001

Soil moistureA 7.97� 0.03 4.77� 0.14 ,0.001

Exposed soil cover (%) 0.82� 0.21 2.06� 0.37 0.005

Rock cover (%) 1.96� 0.57 3.05� 0.60 0.029

Litter cover (%) 21.04� 2.08 23.77� 1.70 0.179

Dead wood cover (%) 2.47� 0.63 15.95� 1.00 ,0.001

Number of burned stumps 0.08� 0.08 75.84� 3.55 ,0.001

Mossþ lichen cover (%) 56.24� 3.69 32.69� 1.37 ,0.001

Tree cover (%) 8.24� 2.80 0.10� 0.10 ,0.001

Shrub cover (%) 40.56� 4.39 2.54� 0.91 ,0.001

Forb cover (%) 9.50� 1.67 7.84� 0.78 0.438

Graminoid cover (%) 7.97� 1.89 14.65� 1.22 ,0.001

ASoil moisture was recorded as a categorical variable, the value of which

ranged from 0 (dry) to 8 (moist).
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Fig. 3. ANOVA tests for mean vascular plant species richness variation

among three transects in burned (black bars) and unburned (white bars) plots

and among the three transects: T1¼ lower transect (3900 m above sea level

(a.s.l.)), T2¼mid transect (4000 m a.s.l.), and T3¼ upper transect (4200 m

a.s.l.). Different letters at the tops of bars represent a significant difference in

vascular plant species richness between burned and unburned plots within

transects, and different letter superscripts on transect labels on the x-axis

represent significant differences among transects, at the P ¼ 0.05 level.
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Indicator species

Out of 69 vascular plant species recorded in this study, 46 spe-
cies were common for both burned matrix and unburned pat-

ches. The number of unique species (i.e. the species recorded
only either in burned or unburned plots) was higher in burned
(n¼ 13) than in unburned (n¼ 7) plots (Table 3). Several highly

palatable species: Astragalus donianus DC. (dark-red
milkvetch), Poa sp., Heracleum nepalense D. Don (Nepal
cowparsnip), Lloydia serotina (L.) Rchb (mountain spiderwort),

Maianthemum purpureum (Wall.) LaFrankie (purple
mayflower), Rubus nepalensis (Hook. f.) Kuntze (Himalayan
creeping bramble), and some important medicinal plant species,

e.g. Gentiana depressa D. Don, Nardostachys jatamansi (D.
Don) DC. (jatamansi) and Rheum acuminatum Hook. f. and
Thomson (Himalayan rhubarb), were found only in the open
burned matrix created by fire (Table 3). Similarly, unburned

plots supported unique species like Anemone demissa Hook. f.
and Thomson (floppy Himalayan anemone), Geranium donia-

num Sweet (Don’s geranium), and Roscoea alpina Royle

(mountain roscoe lily), which were absent from the burned
habitat and also had importantmedicinal value (Table 3). Sorbus
microphylla was the only palatable species unique to unburned

plots, while the other unique species were undesirable or not
consumed. Himalayan and Pan-Himalayan endemics repre-
sented 15 of the 20 identified unique species (Table 3), and the
majority of indicator species were also dominated by these

endemics (Table 4). In total, 14 plant species were identified as
indicators for burned and 14 species for unburned plots
(P , 0.05, based on Monte Carlo test; Table 4).

The most substantial variation among burned and unburned
plots was found with Transect 2. Large shrubs Rhododendron
campanulatum and Sorbus microphylla were indicators of

unburned plots in Transect 2, but a forb and a grass were
indicators of Transect 2 in burned plots. Transects 1 and 3 were

generally represented by indicators that were forbs, ferns and
dwarf woody species in both burned and unburned plots.

Transect 3 indicators of burned plots included several species
that are recognised indicators of disturbance due to overgrazing,
e.g. Anemone rupestris Wall. ex Hook. f. and Thomson (blue

rock anemone), Anemone smithiana Lauener & Panigrahi, and
Euphorbia stracheyi Boiss. (Himalayan prostrate spurge)
(Bauer 1990; Ghimire et al. 2006).

Discussion

Anthropogenic burning in alpine shrublands may be sustainable

as a temporally and spatially dynamic process, providing fodder,
food, fuel, medicine and religiously significant resources to
practitioners of burning. Agropastoralists of the Nepalese

Himalaya have used fire in alpine pastures purposefully for
social and economic reasons, i.e. for the regeneration of grasses
and for the promotion of grazing, for an unknown number of

generations. Although prescribed fire used as a management
tool has been studied in Nepal’s subtropical grasslands, where
grazing is prohibited (e.g. Peet et al. 1999), this is the first

detailed study of anthropogenic fire in Himalayan alpine
shrublands, where burning and grazing are common dis-
turbances linked to the livelihood of the local people.

The number of unique species was greater in burned than in

unburned plots, and most of the unique species were Himalayan
or Pan-Himalayan endemics. Some of the species unique to
burned plots were rare and threatened forbs, such as Nardos-

tachys jatamansi (International Union for Conservation of
Nature, IUCN Redlist critically endangered) and Rheum acu-

minatum, which have substantial local use and medicinal values

(Manandhar 2002; SK Ghimire, S Thapa-Magar, MR Shrestha,
B Devkota, MR Gubhaju 2008, unpubl. data). Some wider-
ranging species, such as Juncus thomsonii found across central
Asia, were also present only in burned habitat. Earlier studies

Table 2. Results of multiresponse permutation procedure

Showing the composition difference between burned and unburned plots and transects. The statistics shown are delta (weighted mean within group distance),

test statistic T (which describes the separation between the groups), P-value associated with T (determined by numerical integration of the Pearson type III

distribution) and agreement statistic A (chance-corrected within group agreement)

Plot comparisons Observed delta (d) d under null hypothesis TA PA AA

Expected Variance Skewness

Burned v. unburned 0.602 0.627 0.0001 �1.536 �11.249 ,0.001 0.039

Transects (T1–T3) 0.546 0.627 0.0001 �1.076 �25.845 ,0.001 0.129

Unburned transects 0.546 0.648 0.0006 �1.000 �12.892 ,0.001 0.157

T1 v. T2 �0.555 0.233 0.006

T1 v. T3 �13.243 ,0.001 0.201

T2 v. T3 �12.098 ,0.001 0.169

Burned transects 0.470 0.565 0.0003 �1.159 �16.780 ,0.001 0.167

T1 v. T2 �10.671 ,0.001 0.109

T1 v. T3 �15.158 ,0.001 0.186

T2 v. T3 �8.933 ,0.001 0.087

T1: Burned v. unburned 0.536 0.582 0.0003 �1.031 �7.941 ,0.001 0.079

T2: Burned v. unburned 0.528 0.589 0.0004 �1.421 �9.488 ,0.001 0.105

T3: Burned v. unburned 0.445 0.459 0.0003 �1.677 �2.585 0.026 0.032

AThe more negative T, the stronger the separation. The P-value evaluates the probability that an observed difference is due to chance. A is the effect size that is

independent of the sample size. A describes within-group homogeneity, compared with the random expectation. When all items are identical within groups, then

the observed delta¼ 0 andA¼ 1, the highest possible value for A. If heterogeneity within groups equals expectation by chance, thenA¼ 0 (McCune et al. 2002).
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Fig. 4. Two-way cluster analysis of plots (vertical dendrogram) and species (horizontal dendrogram).
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(burned, filled symbols; unburned, open symbols) and transect (T1, triangle; T2, inverted triangle; T3, box).

Species abbreviations are provided in Table S2.
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have shown that rare and threatened plant species may be
favoured, to some extent, by intermediate burning (Dudley
and Lajtha 1993; Van Lear et al. 2005). A study evaluating

the detailed demographic effects of fire on rare and threatened
plant species should be completed in the Himalayan alpine
ecosystem to inform best management practices for conserva-

tion of species and continued socioeconomic benefit to local
agropastoralists.

Many studies have shown that fire positively influences

species diversity by maximising the coexistence of numerous
species owing to the removal of competing woody biomass and
making habitat suitable for forbs, grasses and fire-adapted
perennial species (Reilly et al. 2006; Twidwell et al. 2012;

Bowles and Jones 2013). Fire is one of the dominant ecological
factors in ericaceous shrublands (Allen et al. 1996), and in
Rhododendron shrublands, fire is favoured by its flammable

secondary metabolites, the presence of dense woolly indumen-
tum on leaves (Ng and Corlett 2003; Innocenti et al. 2010; Paul
et al. 2010; Guleria et al. 2011), a lush thicket of mature stumps

and good-quality fuels. The results of the MRPP and two-way
cluster analysis demonstrate that the effects of burning can, at
least temporarily, foster a change in habitat composition from

one dominated by shrubland species to one where grassland
species may thrive. The Lauribina Danda fire created a mosaic
of high-severity matrix and unburned patches, converting a
homogeneous shrubland to a more heterogeneous community

of mixed grassland and shrubland.
There appears to be an interaction between elevation and

fire in changes in community composition. Stronger variation

in composition and species richness was observed between
burned and unburned plots in the mid-elevation Transect 2
compared with the lowest-elevation Transect 1 and highest-

elevation Transect 3. The IV analysis demonstrated a change at
mid-elevation, at least temporarily, in vegetation composition
from shrubland to a grassland similar to higher-elevation
alpine grasslands, i.e. large R. campanulatum and Sorbus

microphylla shrub dominance in unburned areas compared
with grass, forb and dwarf shrub dominance in burned areas
of Transect 2. In addition, in the cluster analysis, unburned

plots fromTransect 2 grouped nearly uniformlywith plots from
Transect 1 (also unburned plots did not differ between Trans-
ects 1 and 2 with the MRPP analysis), but burned plots from

Transect 2 were much more likely to be grouped with plots
from Transect 3. The pattern in Transect 2 is similar to results
reported from other regions (Walker 2001; Sheuyange et al.

2005), where herbaceous and graminoid species are favoured
by burning and shrub cover is temporarily reduced (Sheuyange
et al. 2005).

The dominant shrubland species were not extirpated, and a

longer monitoring period is required, but our data indicate that
the community likely possesses the capacity to respond resil-
iently to disturbance and may not permanently shift away from

the pre-burn vegetation structure. Although their aboveground
biomass was either mineralised or harvested, the shrubs readily
sprouted from the remaining rootstock and will likely regain

canopy dominance in a cyclical pattern shifting across the alpine
shrubland zone as mature patches are burned, utilised and left
fallow. Because Rododendron shrubs are highly valued as
medicinal and aromatic plants, their resprouting and regrowth

Table 3. Plant species unique to unburned and burned plots

Including their palatability, major ethnobotanical use and chorotype.

P, preferred; U, consumed but undesirable; N, not consumable; CA, central

Asiatic; HE, Himalayan endemic; HO, Holarctic; PH, Pan-Himalayan;

–, none

Species PalatabilityA Major

ethnobotanical

useB

ChorotypeC

Burned

Arenaria bryophylla Fernald

(Caryophyllaceae)

N Medicinal PH

Astragalus donianus DC.

(Fabaceae)

P Medicinal HE

Epilobium wallichianum

Hausskn. (Onagraceae)

U Medicinal PH

Gentiana depressa D. Don

(Gentianaceae)

U Medicinal HE

Heracleum nepalenseD. Don

(Apiaceae)

P Fodder, food

and medicinal

PH

Juncus thomsonii Buchenau

(Juncaceae)

U � CA

Lloydia serotina (L.) Rchb.

(Liliaceae)

P Medicinal HO

Maianthemum purpureum

(Wall.) LaFrankie

(Asparagaceae)

P Food and

medicinal

PH

Nardostachys jatamansi (D.

Don) DC. (Caprifoliaceae)

N Medicinal and

religious

PH

Pedicularis elwesii Hook. F.

(Orobanchaceae)

U � PH

Poa sp. (Poaceae) P � �
Rheum acuminatum Hook. F.

and Thomson

(Polygonaceae)

U Food and

medicinal

PH

Rubus nepalensis (Hook. F.)

Kuntze (Rosaceae)

P Food HE

Unburned

Anemone demissa Hook. F.

and Thomson

(Ranunculaceae)

N Medicinal PH

Eritrichium sp.

(Boraginaceae)

N � �

Geranium donianum Sweet

(Geraniaceae)

U Medicinal PH

Roscoea alpina Royle

(Zingiberaceae)

U Medicinal HE

Sorbusmicrophylla (Wall. Ex

Hook.f.) Wenz. (Rosaceae)

P Fodder and fuel PH

Thalictrum cultratum Wall.

(Ranunculaceae)

U Medicinal PH

Viola biflora L. (Violaceae) U Medicinal HO

APalatability for each species presented here is based on the interviews with

herders and local people (details provided in Table S1).
BMajor ethnobotanical uses: the uses presented in the table are based on

present study interviews with herders and local people and references con-

sulted are provided in Tables S1 and S2.
CChorotype determination is based on species geographical distribution as

detailed in Press et al. (2000) and Wu et al. (1994).
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is an important step in the process that maintains their future
availability for ethnobotanical use.

Changes in species range sizes due to climate change are

especially likely in montane regions (Myers et al. 2000).
Climate change is not only a threat to the plant species and
ecology of montane regions, but to the social and economic

sustainability of local people who utilise vegetation on the
slopes of mountain ranges like the Himalaya. Annual tempera-
ture is projected to increase in the Himalaya by 4–58C by the end

of the 21st century (Kumar et al. 2006). Feeley and Silman
(2010) calculated that similar temperature changes are expected
on the eastern slopes of the Andes, and that plants will need to
migrate upslope.900 m by the end of the century to remain at

climate equilibrium. Thus, on some ridges, such as Lauribina
Hill, alpine plants will be squeezed between the ridge top and the
upward-migrating shrubs and trees. The only remaining habitat

options for persistence of herbaceous alpine species may
become burned patches where woody cover is consumed. Our
results suggest that local agropastoralist’s use of fire opens gaps

in the shrub canopy and favours herbaceous species at least
temporarily. Their use of fire in the future may be the only
mechanism for maintaining adequate grazing fodder and other

species of ethnobotanical significance in proximity to their
current settlements. However, the interaction of increasing
temperature with fire may create more dangerous burning
conditions over time.

In accordance with the results of earlier studies (Xiang et al.
2014), we found that burned and unburned shrub habitat patches
differed considerably in edaphic properties; burned soils had

higher, approximately neutral, pH and lower soil moisture
compared with unburned soils. Generally, fire increases soil
pH and nutrient availability, but severe wildfire can have

deleterious and lasting effects on soil nutrients, structure,
porosity and microbial activity (Certini 2005; Xiang et al.

2014), and hydrophobicity of burned soil reduces water absorp-
tion capacity and makes soil more prone to erosion (Certini

2005). The present study was completed 2 years after fire, and
the observed differences in vegetation composition may have
been influenced to an unknown extent by changes in soils.

Further, a detailed account of soil property changes due to fire is
beyond the scope of this research and requires separate and
detailed study. As observed in LNP, colonisation and growth of

grasses can benefit from burning with exposed soils, both of
which were significantly greater in burned areas on Lauribina
Danda, and reduced dominance of competitive woody species

(Walker 2001), which covered a significantly smaller area in the
burned matrix in our study area.

Conclusions

Fire at LNP in central Nepal was found to open the shrub canopy
of Rhododendron species and increase species richness of her-
baceous plants, including grasses and forbs of ethnobotanical

value 2 years after fire. Our study area showed early signs of
secondary succession in fire-affected shrublands of the subal-
pine zone. We also found that the IV analysis demonstrated a

change at mid-elevation, at least temporarily, in vegetation
composition from shrubland to a grassland similar to higher-
elevation alpine grasslands. Burning to some extent also
favoured Himalaya and Pan-Himalaya endemics and some rare

and threatened species. Climate change and the potential for
increasing anthropogenic impacts from alteration of historic fire
regimes, medicinal plant harvesting, logging and grazing may

place alpine shrublands at greater risk. Reduction and potential
elimination of those shrublands in central Nepal not only
threatens biodiversity but the local livelihoods of the people of

LNP. Additional data may expose relationships and responses
not apparent in the earliest years after high-elevation fires
(DellaSala et al. 2015). We recommend a landscape-scale

analysis of the alpine shrubland and pasture zone to examine
the potential existence of a shifting mosaic steady state
(Bormann and Likens 1979) created by anthropogenic fire and
local management. We also suggest the establishment of long-

term monitoring on the effects of anthropogenic fire on alpine
shrublands and a plan that includes locals for sustainable man-
agement of this valuable habitat.
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