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Abstract. Computational models of wildfires are necessary for operational prediction and risk assessment. These
models require accurate spatial fuel data and remote sensing techniques have ability to provide high spatial resolution

raster data for landscapes. We modelled a series of fires to understand and quantify the impact of the spatial resolution of
fuel data on the behaviour of fire predictive model. Airborne laser scanning data was used to derive canopy height models
and percentage cover grids at spatial resolutions ranging from 2 m to 50 m for Mallee heath fire spread model. The shape,

unburnt area within the fire extent and extent of fire areas were compared over time. These model outputs were strongly
affected by the spatial resolution of input data when the length scale of the fuel data is smaller than connectivity length
scale of the fuel. At higher spatial resolutions breaks in the fuel werewell resolved often resulting in a significant reduction

in the predicted size of the fire. Our findings provide information for practitioners for wildfire modelling where local
features may be important, such as operational predictions incorporating fire and fuel breaks, and risk modelling of peri-
urban edges or assessment of potential fuel reduction mitigations.
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Introduction

Accurately predicting the behaviour of wildland fires is
exceedingly difficult due to the complex set of coupled pro-

cesses that drive fire spread. These includeweather, topography,
fuel moisture and forest fuel structure (Alexander 2013). Recent
advances in computational models have shown the potential to

predict fire behaviour effectively (Gould et al. 2007; Cruz et al.
2013). These models are used to characterise fire behaviour
under specific fuel and weather conditions and examine the
potential effectiveness and ecological impacts of fuel treatment

programs and predict fire spread during a fire event. Wildfire
models are typically grouped into two categories: (1) physical
models; and (2) empirical models (Sullivan 2009a, 2009b).

Physical models are primarily developed with an aim of simu-
lating the physical and chemical processes controlling fire
propagation and other aspects of fire behaviour (Morvan 2011;

Sullivan 2017a, 2017b). Physical models give a better under-
standing of how fuel treatments modify fire behaviour. How-
ever, the necessary knowledge for accurate process level

modelling of combustion chemistry and outputs, heat release
and heat transfer are still incomplete (Hanson et al. 2000; Finney
et al. 2013). Despite the complexity of these models, the use of
spatially heterogeneous fuel distributions has been overly

simplistic. For example, Cassagne et al. (2011) considered only
fine fuels and Mell et al. (2007) treated live fuel combustion in
the same way as dead fuels only with higher moisture content.

Furthermore, apart from a few examples of the evaluation of
predicted rates of fire spread and behaviour against large-scale
experimental fire observations published to date (e.g. Mell et al.

2007; Linn et al. 2012a; Dupuy et al. 2014; Pimont et al. 2014),
the veracity of physical model results have not been rigorously
tested (Alexander and Cruz 2013). Due to the limitations in
knowledge and the dependence of the physical models on

empiricism, use of physical model operationally is still ques-
tionable (Cruz et al. 2017; Jiang et al. 2021).

Empirical models are based on data from field experiments

(Cheney et al. 1998; Gollner et al. 2015; Cruz et al. 2017). They
are fast to evaluate, making them ideal for providing rapid large-
area predictions for the path of a fire (Hilton et al. 2019). These

models predict the behaviour of a fire using a set of associations
between factors driving the fire (Sullivan 2009b). These include
weather conditions such as wind and air temperature, as well as

fuel and landscape conditions. Fuels have particular importance
as they are the only element of the landscape that can be
modified to influence the behaviour of future fires (Duff et al.
2017). As such, it is important to have detailed knowledge and
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understanding of relevant biomass characteristics, or fuel struc-

ture, as they affect fire propagation and behaviour (Bradstock
et al. 2012; Blanchi et al. 2014). The structure of fuel includes
properties such as the horizontal and vertical distribution, the

percentage of live and dead fuel and the abundance of vegetative
elements above the ground level including woody debris,
branches, barks, foliage and stems (McElhinny et al. 2005;
Ravindranath and Ostwald 2008).

Given the influence of local wind conditions and fuel
heterogeneity, it is essential to explicitly account for the effects
of fuel structure when exploring the interaction between forest

structure and fire behaviour (Pimont et al. 2011; Linn et al.

2013; Hoffman et al. 2015; Parsons et al. 2017; Ziegler et al.
2017; Atchley et al. 2021). Thus, it is important to explicitly

incorporate the effects of canopy structure to improve the
behaviour of fire (Hilton et al. 2015). However, studies that
systematically characterise the sensitivity of fire behaviour to

the spatial resolution of fuel inputs are absent owing to poorly
described fuel conditions and computational or experimental
costs. Therefore, the response of fire behaviour to fuel arrange-
ment remains poorly quantified, which limits estimates of fire

outcomes (Duff et al. 2017).
Techniques employed to estimate forest structure and bio-

mass include both direct and indirect methods of assessment.

Direct methods involve destructive sampling of vegetation and
are considered to be the most accurate form of assessment
(Brown et al. 1989; Volkova et al. 2016). Samples are collected

on site, then weighed, dried in an oven or microwaved to
constant dry-weight and re-weighed. These dry weights are then
used to estimate the volume of biomass in the plot (or given
strata) (Hawley et al. 2018). Models have been developed to

facilitate the extrapolation of this data over a wider area
(Ohsowski et al. 2016). However, achieving a suitable number
of samples can be labour and cost intensive and time-consuming

(Loudermilk et al. 2009; Elshikha et al. 2016).
In contrast to destructive sampling techniques, indirect

assessment using remote sensing can provide synoptic, spatially

comprehensive characteristics of investigated forest stands in an
efficient manner. Data captured over varying spatial, spectral
and temporal scales has been used for the purpose of forest cover

and health assessment (Coppin and Bauer 1996; Boyd and
Danson 2005; Devaney et al. 2015; Pause et al. 2016; Lausch
et al. 2017). Satellites are suitable for covering a large area for
conducting multi-temporal analysis. However, satellite imagery

is unable to measure detailed vertical measurements of forest

structure often required for use in fire simulation models
(Matese et al. 2015), although future technologies (NASA’s
Global Ecosystem Dynamics Investigation; GEDI) may be able

to progressively bridge this gap (Dubayah et al. 2017; 2020).
Airborne laser scanning (ALS) is an active remote sensing

technique that utilises the reflections from emitted laser pulses
from a known location and orientation to determine the 3D

properties of the environment (Koma et al. 2021). Studies have
shown that ALS can provide estimates of 3D forest canopy
structure (Lim et al. 2003; Korhonen et al. 2011; Hancock et al.

2017). ALS-derived canopy height models have been used to
describe canopy height distribution (Hopkinson et al. 2004,
2006; Rosette et al. 2008; Nie et al. 2018) to identify individual

tree heights (Brandtberg 1999; Hyyppä and Inkinen 1999; Yao
et al. 2013), and to estimate biomass (Cao et al. 2014) and leaf
area index (LAI) (Luo et al. 2015). However, the reliability of

estimates can be degraded in lower forest strata particularly in
areas of high canopy cover due to occlusion (Chasmer et al.
2006; Vega et al. 2014; Fieber et al. 2015; Jarron et al. 2020).
Furthermore, the resolution of the data has also been shown to

play a role in the reliability of estimates from all canopy strata
(Hayashi et al. 2014; Wilkes et al. 2015). For example, studies
by Jakubowski et al. (2013) and Leitold et al. (2015) show that

there is trade-off between LiDAR pulse density and forest
measurement accuracy.

There have been many studies exploring the potential of

LiDAR to measure fuel properties some of which are sum-
marised in Table 1. In most cases, this has involved calculating
parameters for fire behaviour models, including canopy height,
canopy base height or canopy bulk density (González-Olabarria

et al. 2012; Erdody and Moskal 2010). Due to the large amount
of evidence highlighting the ability of ALS to derive fuel related
metrics, their value in operational risk and modelling frame-

works are likely to be high (Price and Gordon 2016; Parsons
et al. 2017; Gale et al. 2021). However, the spatial resolution of
the data obtained and used in fire behaviour models from ALS

data can vary significantly (Table 1). Given the potential of ALS
data and the ability to derive fuel maps at a range of spatial
resolutions, a greater understanding of how resolution interacts

with existing fuel models is required.
This study aimed to investigate the impact of varying spatial

resolution of input fuel data on the performance of a predictive
wildfire model using real world fuel data. To our knowledge,

Table 1. Selected studies which utilise ALS to derive wildfire fuel related metrics

Reference Metrics derived Data resolution

Erdody and Moskal 2010 Canopy height, canopy base height, canopy bulk density 20m

González-Olabarria et al. 2012 Forest canopy cover, shrub cover, Lorey’s height, mean shrub height, crown biomass Landscape level (500m2)

Kane et al. 2014 Canopy gap, clump open and open 30m

Kramer et al. 2014 Canopy base height, canopy fuel, basal area 30m

Montealegre et al. 2014 Composite Burn Index (CBI) 25m

Gajardo et al. 2014 Canopy surface height, canopy base height, canopy bulk density 25m

Huesca et al. 2019 Fuel type, vertical vegetation profile 30m

Engelstad et al. 2019 crown fuel base height, live crown base height, canopy bulk density and stand age 10m

Botequim et al. 2019 Mean height, stand basal area, stand volume over bark, canopy base height 22m diameter plots
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there is limited research or guidance to select a suitable spatial
resolution of input fuel data for fire behavioural and predictive
models. This study therefore fills an essential knowledge gap by

providing information on the impact of spatial resolution input
fuel data on model outputs. We model the spread of a series of
hypothetical fires in the AustralianMallee vegetation type using

an empirical Mallee heath fire spread model (Cruz et al. 2013),
which gives the forward spread of the fire as a function of
canopy cover and height. ALS data is used to provide these

inputs at a range of spatial resolutions. In this study, we employ
’Spark’, an open framework for wildfire prediction and analysis
(Miller et al. 2015).

Method

Study area

The study area for this experiment was the Calperum Mallee
TERN Super Site located 25 km north of Renmark in South

Australia (3384404900S, 14085202200E) (Fig. 1a). This site was
chosen due to the availability of a published empirical fire spread
model for the fuel type at the site (see Fire propagation model)

and high-resolution remote sensing data (seeRemote sensing data
and pre-processing). The landscape is dominated by ancient sand
hills that run approximately east–west, with undulation from

swale to crest being up to 8 m in elevation (Meyer et al. 2015).
The vegetation in the area is dominated by multi-stem

Eucalypt tree species (Eucalyptus dumosa, Eucalyptus incras-
sata, Eucalyptus oleosa and Eucalyptus socialis) (Fig. 1b).

These trees are sparsely distributed (approximately 3 m apart)
and grow between 3.5 and 7 m (Meyer et al. 2015). The site
contains a sparse mid-storey consists of Eremophila, Hakea,

Olearia, Senna andMelaleuca genera and a spaced understorey
of spiny grass.

Fire propagation model

The vegetation in the area was modelled using an empirical
Mallee fire spread model developed by Cruz et al. (2013). This
model gives rate of spread of both the possible surface fire, Rs

(mmin�1) and crown fire,Rc (mmin�1) as a function of the 10-m
open wind speed, U10 (km h�1) and fuel parameters. The fuel
parameters are the dead litter moisture content, MC (%), the

canopy cover, Covo (%) and the canopy height, H (m). The rate
of spread is given by:

Rs ¼ 3:337� U10 � expð�0:1284�MCÞ � H�0:7073 ð1Þ

Rc ¼ 9:5751� U10 � exp �0:1795�MCð Þ � Cov0=100ð Þ0:3589 ð2Þ

where the moisture content used is given by Cruz et al. (2010):

MC ¼ 4:79þ 0:173� RH � 0:1� T � 25ð Þ � D� 0:027� RH ð3Þ

where RH is the relative humidity (%), T is the air temperature
(8C) and D is solar radiation variable.

Note Eqn 3 only holds during daytime hours (D ¼ 1 and 0

otherwise). Rather than assuming the fire is a surface or crown
fire themodel uses a probability of crowning (Pc), and combines
Eqn 1 and Eqn 2 into an overall rate of spread, S (mmin�1) using
this probability:

S ¼ 1:0� Pcð Þ � Rs þ Pc � Rc ð4Þ
where

Pc ¼ 1:0=ð1:0þ expð�ð�11:138þ 1:4054� U10 � 3:4217�MCÞÞÞ
ð5Þ
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Calperum Mallee

Fig. 1. (a) Location of the study area in south-east of the state of South Australia. (b) Vegetation

present in the study area (source: https://supersites.tern.org.au/supersites/clpm). (c) Plot design used

for the study area showing the location of 10 ignition points. Thewind direction at each ignition point is

shown as black arrows. The points were chosen to be 1.5 km from the centre of the area and at 368

intervals from each other.
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From Eqn 1, Rs –. N as H –. 0. To circumvent this, we
imposed the condition Rs 5 0 at H ¼ 0.

The Mallee heath model provides a 1D frontal rate of spread

but must be modified for a 2D fire simulation. This is carried out
by assuming the 2D shape is locally elliptical with a given
length-to-breadth ratio (Alexander 1985). In lieu of measured

data for this fuel type (Mallee), we have used fitted elliptical
parameters for eucalypt forest (Cruz et al. 2013):

LBR ¼ 0:1143� U10 þ 0:4143 ð6Þ

The fire spread model also requires the starting conditions of
the fire (e.g. ignition points, lines or areas of existing fire).

Typically, topography information is also required as the speed
of a fire is dependent on the slope of the terrain. This effect was
ignored for the simulations in this study as the focus was on the
effect of spatial resolution on fuel data. The parameters in these

models are based on regressions from the experimental data and
as such represent an average rate of spread.

Remote sensing data and pre-processing

The ALS data used in this study was obtained from TERN
AusCover (http://www.auscover.org.au/). Small footprint ALS
data was acquired at a flying height of 600m above ground level

over 5 � 5 km study site in February 2012 with the aim of
characterising the vegetation and landscape of the site. A Riegl
LMS-Q560 laser scanner was used to capture data with a

nominal pulse density of 10 pulses per m2 and with a maximum
of seven returns per pulse.

Data was collected from a fixed wing aircraft using north-

south orientated flight lines with a spacing of 125 m and a
maximum scan angle of 458 field of view. The swath overlap
between flight lineswas 50%. The scanner has a beamdivergence

of 0.5 mrad resulting in a laser footprint of 30 cm on the ground.
Discrete returns were classified into either ground or non-

ground using the python implementation of the Cloth Simula-
tion Filter (CSF) (https://github.com/jianboqi/CSF). A complete

description of the CSF algorithm and the various parameters can
be found in Zhang et al. (2016). In brief, this filter identifies
points that are most likely belonging to the ground through the

simulation of a rigid cloth draped over the point set. The filter is
parameterised using height differences, grid resolution, time
step and rigidness parameters. In this case, values of 0.02, 0.5, 2

and 3 were applied for height difference, grid resolution, time
step and rigidness, respectively.

Once the ground points were identified, linear interpolation
was used to generate a 1 m resolution Digital Elevation Model

(DEM). Subsequently, the above ground height (AGH) of all
non-ground points was calculated by subtracting the value of the
DEM elevation at each horizontal location. Points with an AGH

of greater than 1.35 m were then classified as originating from
the canopy. This height has been shown to efficiently separate
the tree crowns from the under-storey and ground vegetation

(McLane et al. 2009).

Fuel metric extraction

In order to quantify the impact of spatial resolution on the fire

spread predictions, canopy height and cover were calculated for

grids using different spatial resolutions. The cell resolution of
grids was set to 2 m, 5 m, 7 m, 10 m, 30 m and 50 m. These
resolutions were chosen based on the point density of the ALS

data and the current data resolutions used in operational settings
(Table 1).

At each resolution, canopy height was computed for each

grid cell as the 95th percentile of the AGH for each point that fell
within that cell. To calculate canopy cover, a grid-based tech-
nique following Korhonen et al. (2011) was used. First a binary

1 m resolution grid was created signifying the presence (1) or
absence (0) of any return classified as being from the canopy.
Binary opening and closing are then applied to remove any small
gaps in the data. The canopy cover at each resolution was then

calculated as the proportion of 1 m grid cells containing canopy
vegetation (or 1 in the binary grid) against the total number of
1mgrid cells in each cell (i.e. there are 25 (1m) cells within each

5m grid cell for example). As each cell of the 2m resolution grid
only contains four (1 m) grids cells, a 0.5 m resolution binary
grid was used in place of the 1 m resolution grid to allow for a

more continuous canopy cover estimate.

Fire spread modelling environment and parameterisation

The area where the fire could be modelled was limited by the

extent of the airborne ALS capture (5 � 5 km). To remove any
bias in the fuel distribution pattern (e.g., horizontal striations),
10 ignition points were distributed evenly (at 36-degree
intervals) around the edges of a 1.5 km radius circle centred

within the data capture (Fig. 1c). At each ignition point, the wind
direction was set such that the fire would pass through the centre
of the study area. This allowed for a model duration of 1 h to

sufficiently represent a medium-sized fire and to ensure each
simulated fire extent (at each ignition point and data resolution)
remained within the footprint of the ALS data. Furthermore, this

also served to remove any directional bias in the results as the
firesmoved in different directions for each of the 10 simulations.

To determine the effect of varying the resolution of fuel

properties, the weather conditions and topography information
were held constant in each simulation. The Mallee model was
developed to suit a range of weather conditions (wind speed, 3.6–
31.5 km h�1; temperature, 15–398 C’; relative humidity, 7–80%)

(Cruz et al. 2010). In this study, we chose to simulate moderate
conditions within these ranges, wind speed was set to 30 km h�1,
temperature to 258C and relative humidity was set to 20%.

A separate Spark simulation was completed for each fuel
resolution at each ignition point. The raster resolution of the
model simulations was set to 1 m � 1 m. All input raster layers

were re-sampled to this resolution and all output layerswritten at
this resolution. Once the simulated fire reaches the cell’s
centroid the cell is considered ignited (and burnt by the end of
the simulation) and the current time is recorded as the arrival

time of fire. After the simulation has been completed, an arrival
time raster and a shapefile of arrival time isochrones is generated
as output.

Model output and statistics used

For this study, all simulations were summarised by the total area
burnt by fire and the ratio between the unburnt area within the
fire perimeter and the total area of the fire perimeter. Area burnt
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is a commonly used metric when fire behaviour and effects are
being examined. It has been used in addressing many ecological
and Earth science challenges, including characterising wildfires

and evaluating their impacts (Golding and Betts 2008; Luo and
Weng 2011; Johnston et al. 2012; Kloster et al. 2012). However,
area alone often ignores the existence of unburnt area within a

fire perimeter (depending on the level of detail in the observa-
tional data); discriminating between burnt/unburnt area is an
important component of the burn mosaic (Kolden et al. 2012,

2015; Krawchuk et al. 2016). The fire perimeter was defined by
an alpha shape (alpha ¼ 1.5) created around the centre point of
all burnt cells. The area burnt was estimated as the summed area
of the grid cells burnt at the end of the simulation.

To compare simulations obtained from the different spatial
resolution input fuel data, a reference fire was also simulated on
a constant landscape with fixed canopy cover and height input

variables. The reference fire is an artificial benchmark in
homogeneous fuel conditions to allow comparison between
the fires. The constant cover and height for the uniform/

continuous landscape were taken as the mean cover and height
of the of 5m resolution grids. The final shape of each simulation
was compared to the burnt area of this reference fire using the

Jaccard Similarity Index (J) (Glen 2016). Several studies have
used J to compare actual fire events with simulated fires
(Kalabokidis et al. 2013; Filippi et al. 2014) and describe
burnt/unburnt area (Gandiwa 2011). This J index simply

expresses the proportion of burnt cells common between two
fire simulations and is given by:

J ¼ ðA \ BÞ=ðA [ BÞ ð7Þ

where A is the number of grid cells burnt in landscapes using
different input data resolutions and B is the number of grid cells

burnt in the reference simulation.

Results

Canopy height and canopy cover representation

Figs 2 and 3 show the spatial distribution of canopy height and
canopy cover for the study area at the different spatial resolu-
tions. Several differences can be seen in how these fuel prop-

erties are represented at the six different resolutions. At higher
spatial resolutions (2 m and 5 m), features such as roads and
evidence of past fires are very apparent in both the height and
cover grids (Figs 2d, e, 3d, e). Such features become less

prominent at the 7 and 10 m spatial resolutions (Figs 2f, k, 3f, k);
nevertheless, at these resolutions key landscape features rele-
vant to fire behaviour (such as roads and evidence of past fires)

remain distinguishable. At both 30 and 50 m resolutions, some
of these features can still be made out but no longer have well
defined edges resulting in smooth transitions between areas of

low and high canopy height and cover (Figs 2l, m, 3l, m).
The violin plots (Figs 4, 5) show the distribution of the

canopy height and cover on a vertical axis allowing for easy
comparison between the canopy height and cover distribution

for different resolutions. The distribution of canopy heights
(Fig. 4) indicates that canopy height increases from a mean of
2.37 m for the 2 m spatial resolution grid to 4.45 m for the 50 m

spatial resolution grid. This increase in mean height is driven by

a lower number of cells recording no vegetation and thus a
canopy height of 0 m (seen as a peak at 0 m in the violin plots at
2 m, 5 m, 7 m and to a lesser extent 10 m in Fig. 4). The standard

deviation of heights ranges from 2.24 m for the 2 m spatial
resolution grid to 1.68 m for the 50 m spatial resolution grid.

A similar trend to that observed from canopy height is seen

for canopy cover where there are several cells containing no
canopy points at high resolutions resulting in a cover of 0%, or
cells completely covered resulting in 100% cover (Fig. 5). These

features are not present at lower spatial resolutions. As spatial
resolution decreases from 7 m, a narrowing of the distribution
can be observedmost notable at 30m and 50m.Variations in the
mean cover between resolutions can also be observed in Fig. 5.

While the mean cover is lowest at 2 m resolution (44%), a trend
showing a reduction in cover with decreasing resolution is
observed between the other resolutions from 62% (5 m) to

55% (50 m).
Fig. 6 shows semi-variogram for both canopy height and

cover using 2m spatial resolution input data. Both canopy height

(Fig. 6a) and cover (Fig. 6b) are spatially correlated up to 10 m.
The magnitude of spatial correlation decreases with separation
distance and no spatial correlation exists after 10 m, the range of

correlation. The nugget for both canopy cover and height at 2 m
spatial resolution is zero, which shows that there is no spatial
variation at distances smaller than the sampling interval.

Modelled fire patterns and unburnt area

The model output is affected by the spatial resolution of input
data. In general, simulations running on a single resolution for

all ignition points reported similar fire patterns. This was
observed for each of the resolution, and ignition point and wind
direction combinations.

Fire spread from the model appears to be affected by how
the breaks in canopy are represented at different resolutions
(Figs 7, 8). In the 2 to 10 m resolution grids, connectivity is
low, slowing down or extinguishing the fire spread. However, at

low spatial resolution (30–50 m grids), fewer breaks and lower
canopy heights are present, which helps the fire to propagate
smoothly without interruption (Figs 7, 8). This is particularly

evident with the presence of the east–west road in the study area
(Fig. 7). For the 5m resolution simulation, this road formost of its
intercepted length prevents fire spread. This effect is greatest

when wind is perpendicular to the linear feature (for an example,
see Supplementary Fig. S1 available at the journal website).

From Table 2, it can be seen that J increases with decrease in

spatial resolution, indicating that simulated fires become
increasingly similar to the reference fire at low spatial resolu-
tion. The same value of J for simulation running with low spatial
resolution input data (30 m and 50 m) indicates that modelled

fire spread is independent of resolution once the cell size is 30m
or above. The area covered at these resolutions is slightly greater
than the constant landscape. This is likely due to the representa-

tion of the fuel landscape having a slightly higher canopy height
than the constant landscape at these resolutions.

Fig. 9 illustrates the ratio of unburnt area to total area in fire

perimeter for each spatial resolution (also reported in Table 2),
aggregated for all of the ignition points. This ratio shows greater
variation at 2 m and this variation decreases with decreased
spatial resolution. The mean ratio value also decreases when
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fuel inputs with decreased spatial resolution are used. Input
data with spatial resolutions of 30 m and 50 m show a complete
burn area with no unburnt area within the fire perimeter and a

ratio value of zero. In general, a decrease in spatial resolution of
input data results in simplification of internal fragmentation of
burnt area.

Modelled burnt area

Fig. 10 shows the total area burnt by fire over a period of 60 min

for each spatial resolution aggregated for all of the ignition

points and the shading shows the 95% confidence interval. It
shows that the total area burnt by fire increases with decrease in
spatial resolution (ranging from 20.75 ha at 2 m resolution grid

to 304.9 ha at 50 m resolution grid) (Table 2). This trend was
observed for all but two ignition points (#2 and #6; Supple-
mentary Figs S1, S5) where the 7 m burnt area prediction at

60 min was slightly greater (3 ha to 4 ha) than the 10 m spatial
resolution dataset. Fig. 10 also shows that the variation in burnt
area increases with time and decreases with decreases in spatial

resolution.

0

2 m(a) (b ) (c )

(f )(e )(d )

(h ) (i ) ( j )

(m )( l )(k )

5 m 7 m

10 m 30 m 50 m

2 4 6

Height (m)

8 10 12

Fig. 2. Canopy height maps produced from ALS data for different spatial resolution over the 5� 5 km study area.

Parts (d, e, f, k, l andm) show the zoomed-in portion (white rectangle) of (a) 2m, (b) 5m, (c) 7m, (h) 10m, (i) 30m and

(j) 50 m spatial resolution canopy heights, respectively.
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Discussion

In this study, we used an empirical fire spread model to investi-

gate the effect of spatial resolution of fuel data on the behaviour of
fire. Earlier, fuels were characterised as homogeneous or using
spatially averaged descriptors (i.e. canopy bulk density, canopy

base height), often without considering the spatial variability
(Hoffman et al. 2016). However, rapidly evolving remote sensing
can now characterise 3D fuel structure at high resolution,

including tree-scale spatial heterogeneity (Liao et al. 2018;
Massetti et al. 2019; Narine et al. 2019) and 3D below-canopy
fuel density (Hudak et al. 2020). Rather than simply assuming

homogeneous landscape with fixed fuel data, high resolution

input fuel data can be used to actively inform, and possibly,

refine, fire behaviour models. Several studies have demonstrated

the importance of incorporating high-resolution fuel fidelity and

heterogeneity information within wildland fuel structure (Pimont

et al. 2009; Atchley et al. 2021) to improve fire behaviour fore-

casts. Detailed high-resolution fuel maps used with a fire

behaviour model have potential to inform fuel management

planning and risk assessment frameworks for operational use.
Our results show an interaction between the spatial resolution

of the data and the characteristics of important features within

0

2 m(a) (b ) (c )

(f )(e )(d )

(h ) (i ) ( j )

(m )( l )(k )

5 m 7 m

10 m 30 m 50 m

20 40 60
Cover (%)

80 100

Fig. 3. Canopy cover maps produced fromALS data for different spatial resolution over 5� 5 km study area. Parts

(d, e, f, k, l and m) show the zoomed-in portion (white rectangle) of (a) 2 m, (b) 5 m, (c) 7 m, (h) 10 m, (i) 30 m and

(j) 50 m spatial resolution canopy covers, respectively.
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the landscape itself, which is consistent with the studies pub-

lished earlier (Parsons et al. 2011; Atchley et al. 2021). Within
the Mallee study area, gaps that were present in the canopy
mainly consisted of linear features such as roads and fire breaks

aswell as lower canopy density in areas recently burnt. At higher
resolutions these features were resolved in the data and affected
the fire area. For example, the calculated cover at very high

spatial resolutions (2mand5m)was 0%over the roads (Fig. 3d, e),
effectively stopping the fire. This effect can be clearly seen in
Fig. 7, a road perpendicular to the head fire direction slowed the
spread of the fire, eventually stopping the spread entirely at high

resolutions. As the angle between the road and the wind
direction becomes similar, the features effect on the fire spread
reduces (Figs S1–S8). This effect is more pronounced at 5 m,

where the fire is stopped by roads, than at 7 and 10 m where the
fire propagates over the roads, particularly where they are
narrower. Conversely, as the spatial resolution for input fuel

data decreases, the fuel properties are aggregated (Fig. 3i, j) due
to canopy features surrounding the road, resulting in a cover
estimate that allows the simulator to propagate the fire over the

feature (Figs S1–S8). Whilst these features changed the overall
burn pattern, only a minor difference in burnt area was seen
when comparing to other lower resolutions data (7–50 m)

(Fig. 10). As such, at high spatial resolutions, the extent of fire
spread can be modelled, while also indicating areas of slower
fire progression due to breaks.

Computational time is important in an operational or risk

modelling context where many simulations may have to be
performed over sets of possible states. Althoughmany of the fire
behaviour models allow a fully 3D description of the forest, they

are too computationally expensive for operational use (Atchley
et al. 2021). And because of computational cost, the domain of
application of fire models is typically limited to a particular

range of scales (Gollner et al. 2015). Simulations performed
using 30 m and 50 m spatial resolution input data produced
similar burnt areas and no unburnt area within the total burnt

area (Figs 7, 8). This suggests computational cost in running the
Mallee heath model could effectively be reduced by using 50 m
spatial resolution, with a lower overall number of computational
grid cells for the model to calculate, for fuel related input data

instead of 30 m. This gives practitioners in these areas an idea of
the trade-off between speed and accuracy. Simulations at 30 m
and 50 m may require an additional model to compensate for

fuel breaks but they should produce comparable results, with
coarser simulations taking a shorter time to compute. Similar
results may be achieved for models that use canopy height and

cover as inputs for predicting fire behaviour and make them
more suitable for operationally use.

The area burnt with reference fire (where canopy height and
cover was assumed to be constant) was found to be similar in

simulations running with different spatial resolution for all
ignition points. Additionally, the reference fire used in this
study produced a similar fire boundary to the 30 m and 50 m

resolution inputs. Whilst remote sensing data is often used to
produce fuelmaps at these resolutions (Table 1), minimal gain is
found in using spatially varying data over this landscape and

when simulating fire using this model.
The low spatial resolution input datamissed fine breaks in the

landscape and as mentioned earlier, allows the fire to propagate.

However, as soon as there is no connectivity between the fuel the
spread of the fire cannot be sustained and slows down or stops,
creating unburnt area. This characteristic is evident in simu-
lations using high spatial resolution input data (Figs 7, 8).

Although we are primarily concerned with physical fuel breaks
as a mechanism to stop fire spread, intense fires in this fuel type
may generate firebrands with the resulting potential for the fire

to jump these breaks. However, there is scarce information in the
literature on spot fire creation in this fuel type and the rate-of-
spread models do not explicitly take this into account. If a

spotting model was included in the simulation, the areas burnt at
higher resolution may be larger as firebrands could jump gaps,
although it is impossible to apply this in the current study as no
spot fire models exists for this fuel type.

0

2 5 7 10 30 50

Resolution (m)

H
ei

gh
t (

m
)

5

10

15

20

Fig. 4. Distribution of height values from the canopy height models

produced at six different spatial resolutions. The white dot and dark grey

box inside each plot represent the mean canopy height and the inter-quartile

range (25th–75th percentile), respectively.

0

2 5 7 10 30 50

Resolution (m)

C
ov

er
 (

%
)

40

20

60

80

100

Fig. 5. Distribution of canopy cover for six different spatial resolution

data. The white dot and dark grey box inside each plot represent the mean

canopy cover and the inter-quartile range (25th–75th percentile),

respectively.

Effect of spatial resolution on wildfire models Int. J. Wildland Fire 783



It is also important to consider the highest resolution achiev-
able from the data source being considered. In this study, the
accuracy of the estimated cover and height is potentially

degraded at 2 m resolution due to the inconsistent sampling of

the ALS data across the study area. This is also likely to play a
role in the resulting very small areas of the predicted fires, as
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plot)) for 1 h. Black curve in each plot shows the fire simulated for a constant

landscape. White area within black ellipse is completely burnt. Light grey
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784 Int. J. Wildland Fire R. Taneja et al.



cells with no returns were considered to have 0% canopy cover

and a canopy height of 0 m. Local features and data artefacts at
this resolution act as fire breaks effectively stopping the fire.We
hypothesise that the ALS data being used at the edge of its

limitations at this resolution, that canopy cover as used in the
development of the model is not the same as the vertically
projected canopy cover at such a fine scale. Further the fire

spread model developed by Cruz et al. (2013) is based on field-
scale experiments and does not consider fuel connectivity at
very small (metre) scales, which could also account for the
breakdown of the model at this very high spatial resolution.

These results have two implications for simulating fires in a
forest with heterogeneous fuels using empirical modelling: (1)
there can be significant differences associated with representing

the canopy fuel as a homogeneous layer for ecosystems that
naturally include gaps; and (2) The spatial resolution at which
fuel metrics for models are developed also influenced modelled

fire behaviour. In this context there are indicative bounds
showing that spatial resolutions below 5 m cause the fire
behaviour model to breakdown, and where spatial resolutions

greater than 30 m model outputs such as fire extent and burnt

area shows similar results to the homogeneous landscape. The

sensitivity of fire behaviour models to fuel spatial resolutions
highlighted in this study suggests the need to choose an
appropriate resolution of input fuel data for increased fuel

description detail. Substantial gains in understanding fire behav-
iour could be made through a stronger incorporation of the
heterogeneity within wildland fuel structure at a higher spatial

resolution into fuels research, particularly with respect to the
underlying drivers of fire regimes in the context of vegetation
response. Such developments could increase the application and
accuracy of data-driven wildfire models (Coen and Schroeder

2013; Coen et al. 2013).
Whilst spatial resolution is the focus of this paper, it is also

important to keep in mind the method used to extract the canopy

height and cover metrics from ALS data. In this study, the 95th
percentile height of the canopy points within each grid cell was
used as the representation of canopy height. This approach

meant the mean canopy height within the study area increased
with decreasing resolution (Fig. 4). Alternative height (i.e.
maximum height or 50th percentile height) and cover metrics

(such as those based on LiDAR return distribution (Korhonen

Table 2. Summary results for all ignition points showing mean (l) and standard deviation (r) of burnt area,

Jaccard Similarity Index (J) and unburnt area ratio

Resolution (m) Burnt area (ha) Jaccard Similarity Index (J) Unburnt area ratio

m s m s m s

2 20.75 13.70 0.07 0.053 0.31 0.07

5 208.19 24.47 0.72 0.088 0.11 0.01

7 251.17 12.99 0.85 0.030 0.06 0.01

10 280.23 20.23 0.92 0.038 0.02 0.01

30 301.90 7.64 0.94 0.015 0 0

50 304.90 7.43 0.94 0.013 0 0
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Fig. 9. Boxplot showing the ratio between the unburnt area within the fire perimeter and the total area

within the fire perimeter for all spatial resolution data.
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et al. 2011) derived fromALS data may interact differently with
varying spatial resolution. For example, the grid-based method
for the calculation of cover used in this study, requires each cell
within the high-resolution grid to be observed by multiple

LiDAR pulses to ensure any canopy present is sampled.
Approaches such as the first cover index presented in Korhonen
et al. (2011) do not require the calculation of this high-density

grid and therefore may result in different model outputs at high
resolutions. Results are presented in the context of this case
study. We suggest future studies could test the relationship

between spatial resolution of fuel metrics and fire behaviour
in different environment.

Conclusion

Empirical fire models are routinely used in fire management
operations to predict fire spread and risk. The operational use of

these models often chooses the spatial resolution of the under-
lying data based on availability. This study assessed the impact
of varying spatial resolution of input fuel data on the perfor-

mance of an empirical fire behaviourmodel. By linking detailed,
spatially explicit fuel maps with an empirical fire behaviour
model, we provide an insight to inform scientists and managers

about the impact of fuel data spatial resolution on area burnt and
the dynamics of fire, time of arrival of fire at any particular
location, and the extent of the unburnt area within the fire
perimeter. Coarse resolution provides connectivity between fuel

elements used in the model allowing the fire to propagate. The
behaviour of the model in terms of burnt area and speed was
similar over a threshold scale of 30 m. Below this threshold,

however, the model was strongly affected by features such as
gaps and patchy data in the fuel, leading to the predicted
perimeter being slowed or stopped. At very high resolutions the

connectivity of individual fuel elements was resolved in the
data, causing the model to break down. This was most likely
caused by the development of the empirical model being based
on experimental data averaged over a plot of a given size,

causing it to produce poor results when applied to fuel data with
a spatial resolution well below the experimental plot size. This
insight has significant potential to inform the operational use of

these models as increasingly high spatial resolution datasets are
becoming available at landscape scale.
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Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single

tree using laser scanner. The Photogrammetric Journal of Finland

16, 27–42.

Jakubowski MK, Guo Q, Kelly M (2013) Trade-offs between lidar pulse

density and forest measurement accuracy. Remote Sensing of Environ-

ment 130, 245–253. doi:10.1016/J.RSE.2012.11.024

Jarron LR, Coops NC, MacKenzie WH, Tompalski P, Dykstra P (2020)

Detection of sub-canopy forest structure using airborne LiDAR.

Remote Sensing of Environment 244, 111770. doi:10.1016/J.RSE.

2020.111770

Jiang W, Wang F, Fang L, Zheng X, Qiao X, Li Z, Meng Q (2021)

Modelling of wildland-urban interface fire spread with the heteroge-

neous cellular automata model. Environmental Modelling & Software

135, 104895. doi:10.1016/J.ENVSOFT.2020.104895

Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, DeFries

RS, Kinney P, Bowman DMJS, Brauer M (2012) Estimated global

mortality attributable to smoke from landscape fires. Environmental

Health Perspectives 120, 695–701. doi:10.1289/EHP.1104422

Kalabokidis K, Palaiologou P, Finney M (2013): Fire Behavior Simulation

in Mediterranean Forests Using the Minimum Travel Time Algorithm.

In ‘Fourth Fire Behavior and Fuels Conference Proceedings – At The

Crossroads: Looking Toward the Future in a Changing Environment’,

July 1–4, 2013, St. Petersburg, Russia. (International Association of

Wildland Fire: Missoula, Montana, USA)

Kane VR, North MP, Lutz JA, Churchill DJ, Roberts SL, Smith DF,

McGaughey RJ, Kane JT, Brooks ML (2014) Assessing fire effects on

forest spatial structure using a fusion of Landsat and airborne LiDAR

data in Yosemite National Park. Remote Sensing of Environment

151, 89–101. doi:10.1016/J.RSE.2013.07.041

Kloster S, Mahowald NM, Randerson JT, Lawrence PJ (2012) The impacts

of climate, land use, and demography on fires during the 21st century

simulated by CLM-CN. Biogeosciences 9(1), 509–525. doi:10.5194/

BG-9-509-2012

KoldenCA, Lutz JA, KeyCH, Kane JT, Wagtendonk JWV (2012)Mapped

versus actual burnt area within wildfire perimeters: Characterizing the

unburnt. Forest Ecology and Management 286, 38–47. doi:10.1016/J.

FORECO.2012.08.020

Kolden CA, Abatzoglou JT, Lutz JA, Cansler CA, Kane JT, Wagtendonk

JWV, KeyCH (2015) Climate contributors to forest mosaics: ecological

persistence following wildfire. Northwest Science 89, 219–238.

doi:10.3955/046.089.0305

Koma Z, Zlinszky A, Bek+o L, Bura Pi, Seijmonsbergen AC, Kissling WD

(2021) Quantifying 3D vegetation structure in wetlands using differently

measured airborne laser scanning data. Ecological Indicators

127, 107752. doi:10.1016/J.ECOLIND.2021.107752

Korhonen L, Korpela I, Heiskanen J, MaltamoM (2011) Airborne discrete-

return LIDAR data in the estimation of vertical canopy cover, angular

canopy closure and leaf area index. Remote Sensing of Environment

115(4), 1065–1080. doi:10.1016/J.RSE.2010.12.011

Kramer HA, Collins BM, KellyM, Stephens SL (2014) Quantifying ladder

fuels: A new approach using LiDAR. Forests 5(6), 1432–1453.

doi:10.3390/F5061432

Krawchuk MA, Haire SL, Coop J, Parisien MA, Whitman E, Chong G,

Miller C (2016) Topographic and fire weather controls of fire refugia in

forested ecosystems of northwestern North America. Ecosphere 7(12),

e01632. doi:10.1002/ECS2.1632

Lausch A, Erasmi S, Douglas JK, Magdon P, Heurich M (2017) Under-

standing Forest Health with Remote Sensing-Part II—A Review of

Approaches and Data Models. Remote Sensing 9(2), 129. doi:10.3390/

RS9020129

Leitold V, Keller M, Morton DC, Cook BD, Shimabukuro YE (2015)

Airborne lidar-based estimates of tropical forest structure in complex

terrain: opportunities and trade-offs for REDDþ. Carbon Balance and

Management 10(1), 3. doi:10.1186/S13021-015-0013-X

Liao W, Van Coillie F, Gao L, Li L, Zhang B, Chanussot J (2018) Deep

learning for fusion of APEX hyperspectral and full-waveform LiDAR

remote sensing data for tree species mapping. IEEE Access : Practical

Innovations, Open Solutions 6, 68716–68729. doi:10.1109/ACCESS.

2018.2880083

Lim K, Treitza P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote

sensing of forest structure.Progress inPhysicalGeography 27(1), 88–106.

doi:10.1191/0309133303PP360RA

Linn RR, Anderson K, Winterkamp J, Brooks A, Wotton M, Dupuy J-L,

Pimont F, Edminster C (2012a) Incorporating field wind data into

FIRETEC simulations of the International Crown Fire Modeling Exper-

iment (ICFME): preliminary lessons learned. Canadian Journal of

Forest Research 42, 879–898. doi:10.1139/X2012-038

Linn RR, Sieg CH, Hoffman CM, Winterkamp JL, McMillin JD (2013)

Modeling wind fields and fire propagation following bark beetle out-

breaks in spatially heterogeneous pinyon–juniper woodland fuel

complexes. Agricultural and Forest Meteorology 173, 139–153.

doi:10.1016/J.AGRFORMET.2012.11.007

Loudermilk EL, Hiers JK, O’Brien JJ, Mitchell RJ, Singhania A, Fernan-

dez JC, CropperWP Slatton KC (2009) Ground-based LIDAR: A novel

approach to quantify fine-scale fuelbed characteristics. International

Journal of Wildland Fire 18(6), 676–685. doi:10.1071/WF07138

Luo YQ, Weng ES (2011) Dynamic disequilibrium of the terrestrial carbon

cycle under global change. Trends in Ecology & Evolution 26(2),

96–104. doi:10.1016/J.TREE.2010.11.003

Luo S, Wang C, Pan F, Xi X, Li G, Nie S, Xia S (2015) Estimation of

wetland vegetation height and leaf area index using airborne laser

scanning data. Ecological Indicators 48, 550–559. doi:10.1016/J.ECO

LIND.2014.09.024

Massetti A, Rudiger C, Yebra M, Hilton J (2019) The Vegetation Structure

Perpendicular Index (VSPI): a forest condition index for wildfire

788 Int. J. Wildland Fire R. Taneja et al.

http://dx.doi.org/10.3390/F5020363
http://dx.doi.org/10.1016/J.ENVSOFT.2015.01.015
http://dx.doi.org/10.1016/J.ENVSOFT.2015.01.015
http://dx.doi.org/10.1016/J.AGRFORMET.2015.01.018
http://dx.doi.org/10.1016/J.AGRFORMET.2015.01.018
http://dx.doi.org/10.1007/S10694-015-0500-3
http://dx.doi.org/10.5589/M06-006
http://dx.doi.org/10.1093/FORSCI/FXZ085
http://dx.doi.org/10.1016/J.JAG.2018.08.020
http://dx.doi.org/10.1016/J.RSE.2012.11.024
http://dx.doi.org/10.1016/J.RSE.2020.111770
http://dx.doi.org/10.1016/J.RSE.2020.111770
http://dx.doi.org/10.1016/J.ENVSOFT.2020.104895
http://dx.doi.org/10.1289/EHP.1104422
http://dx.doi.org/10.1016/J.RSE.2013.07.041
http://dx.doi.org/10.5194/BG-9-509-2012
http://dx.doi.org/10.5194/BG-9-509-2012
http://dx.doi.org/10.1016/J.FORECO.2012.08.020
http://dx.doi.org/10.1016/J.FORECO.2012.08.020
http://dx.doi.org/10.3955/046.089.0305
http://dx.doi.org/10.1016/J.ECOLIND.2021.107752
http://dx.doi.org/10.1016/J.RSE.2010.12.011
http://dx.doi.org/10.3390/F5061432
http://dx.doi.org/10.1002/ECS2.1632
http://dx.doi.org/10.3390/RS9020129
http://dx.doi.org/10.3390/RS9020129
http://dx.doi.org/10.1186/S13021-015-0013-X
http://dx.doi.org/10.1109/ACCESS.2018.2880083
http://dx.doi.org/10.1109/ACCESS.2018.2880083
http://dx.doi.org/10.1191/0309133303PP360RA
http://dx.doi.org/10.1139/X2012-038
http://dx.doi.org/10.1016/J.AGRFORMET.2012.11.007
http://dx.doi.org/10.1071/WF07138
http://dx.doi.org/10.1016/J.TREE.2010.11.003
http://dx.doi.org/10.1016/J.ECOLIND.2014.09.024
http://dx.doi.org/10.1016/J.ECOLIND.2014.09.024


predictions.Remote Sensing of Environment 224, 167–181. doi:10.1016/

J.RSE.2019.02.004

Matese A, Toscano P, Filippo Di Gennaro S, Genesio L, Vaccari FP,

Primicerio J, Belli C, Zaldei A, Bianconi R, Gioli B (2015) Intercom-

parison of UAV, aircraft and satellite remote sensing platforms for

precision viticulture. Remote Sensing 7(3), 2971–2990. doi:10.3390/

RS70302971

McElhinny C, Gibbons P, Bracka C, Bauhus J (2005) Forest and woodland

stand structural complexity: Its definition and measurement. Forest

Ecology and Management 218(1–3), 1–24. doi:10.1016/J.FORECO.

2005.08.034

McLane AJ, McDermid GJ, Wulder MA (2009) Processing discrete-return

profiling lidar data to estimate canopy closure for large area forest

mapping and management. Remote Sensing 35(3), 217–229.

Mell WE, Jenkins MA, Gould J, Cheney P (2007) A physics-based

approach to modeling grassland fires. International Journal of Wildland

Fire 16, 1–22. doi:10.1071/WF06002
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