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Abstract. Wildfire decision support systems combine fuel maps with other fire environment variables to predict fire
behaviour and guide management actions. Until recently, financial and technological constraints have limited provincial fuel
maps to relatively coarse spatial resolutions. Airborne Laser Scanning (ALS), a remote sensing technology that uses LiDAR

(Light Detection and Ranging), is becoming an increasingly affordable and pragmatic tool for mapping fuels across localised
and broad areas. Few studies have used ALS in boreal forest regions to describe structural attributes such as fuel load at a fine
resolution (i.e.,100m2 cell resolution).We usedALS to predict five forest attributes relevant to fire behaviour in black spruce

(Piceamariana) stands inAlberta, Canada: canopy bulk density, canopy fuel load, stemdensity, canopy height and canopy base
height. Least absolute shrinkage and selection operator (lasso) regressionmodels indicated statistically significant relationships
betweenALSdata and the forestmetrics of interest (R2$0.81 for all metrics except canopy base heightwhich had aR2 value of

0.63). Performance of the regression models was acceptable and consistent with prior studies when applied to test datasets;
however, regression models presented in this study mapped stand attributes at a much finer resolution (40 m2).
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Introduction

Wildfires consume live and dead biomass (i.e. fuels) that form
the ground, surface and crown structures of a forested stand.
Assemblages of fuel and non-fuel elements across space and

their physical properties alone and in relation to each other
define the fuel complex. Fuel properties such as chemistry,
shape, size, and load or amount will vary naturally within forest

ecosystems. Attributes that define the spatial relationship of
individual fuel elements to each other such as vertical arrange-
ment, horizontal distribution and compaction will also vary

(Countryman 1972; Keane 2015). Fine-scale measurements of
these varied fuel properties and attributes are largely limited to
research conducted in localised areas such as experimental
burning studies (e.g. Alexander et al. 2004) or laboratory

experiments of fuel flammability typically designed to address
one or more specific components of flammability proposed by
Anderson (1970): ignitability, sustainability and combustibility

(Varner et al. 2015). Fuel measurement using field sampling
methods are resource- and time-intensive, which is impractical
for collecting comprehensive inventories of fuel characteristics

across vast and remote northern landscapes.
At landscape scales, fuels are typicallymapped as categorical

fuel types that represent fuel assemblages and related physical

properties and spatial arrangement of fuels within major for-
ested or open vegetated landcovers. In Canada, the Canadian
Forest Fire Behaviour Prediction (FBP) System (Forestry Fire
Danger Group Canada 1992) defines 16 standard fuel types that

can be mapped using satellite images and forest inventory data
commonly available at coarse resolutions across broad forest
management areas. At finer spatial scales, statistical models
have been developed to estimate canopy fuel characteristics

from field-measured data (e.g. Cruz et al. 2003). Photo-load
visual guides (e.g. Scott and Reinhardt 2005) have also been
used to derive site-specific estimates of fuel loads without the

need for time- and resource-intensive fuel sampling; however, it
is difficult to apply these methods across broad spatial scales
without interpolating fuel characteristics.

Fuel attributes, in combinationwith weather and topography,
dictate the manner in which fires ignite, spread and extinguish
and are therefore critical inputs to all fire behaviour models. The
contribution of canopy fuels to combustion is of particular

importance for fire behaviour prediction. Involvement of can-
opy fuels in combustion generates higher intensities than surface
or ground fires and can be expected to result in fire behaviour

conditions that exceed the capabilities of suppression crews
working directly on the fire front (Alexander 1982; Hirsch et al.
1998). Canopy fuel attributes used to model the onset of

crowning and potential for sustained crown fire spread include
canopy height, canopy base height (CBH), canopy fuel load
(CFL) and canopy bulk density (CBD) (Keane et al. 2001; Cruz

et al. 2003). Canopy height affects wind trajectory and speed
(Finney 1998), which will influence fire intensity and affect the
distance embers travel aloft (Chuvieco et al. 2003). Canopy base
height is the vertical distance between the ground and live
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foliage and is important for determining whether a surface fire
will progress into a canopy fire (Van Wagner 1977). Canopy
fuel load is the amount of fuel in the canopy per unit area that is

available for combustion (Stocks et al. 2004) and is a determi-
nant of fire intensity. Canopy bulk density describes the avail-
able canopy fuel per unit volume that affects the rate of fire

spread (Van Wagner 1977; Chuvieco et al. 2003).
Advancements in remote sensing technologies provide an

emerging means of quantifying fuel characteristics across broad

areas at a level of detail and precision that far exceeds current
fuel type categories and maps commonly derived from forest
inventories and satellite imagery (e.g. Andersen et al. 2005).
Airborne Laser Scanning (ALS), a form of remote sensing that

utilises LiDAR (Light Detection and Ranging), and aerial
imagery are both popular tools to characterise canopy fuels
(e.g. Erdody and Moskal 2010; Bright et al. 2017); however,

ALS is considered more accurate for describing forest charac-
teristics (Erdody and Moskal 2010) because it penetrates
through small openings in the canopy and can describe the

three-dimensional structure of a forest (Vastaranta et al. 2012;
White et al. 2016; Wu et al. 2016). Field measurements are
almost always required as baseline data when developing

vegetation models using remote sensing technologies and are
also used to validate statistical models. Although field measure-
ments will always be important, once confidence is achieved in a
remote sensing model, vegetation data can be mapped at much

higher resolution than possible with field sampling alone.
Pioneering work by Andersen et al. (2005) modelled the

statistical relationship between ALS point clouds and field-

measured fuel data. Numerous subsequent studies have developed
ALS-based models for mapping forest fuel metrics across an area
of interest (e.g. Erdody and Moskal 2010; Hermosilla et al. 2014;

Botequim et al. 2019). Models that use ALS data to describe fine
scale variability in fuel structure are species-specific and have yet
to be developed for black spruce (Picea mariana) stands, a
prominent stand type in boreal ecosystems that covers 2.7 million

km2 of land within Canada (National Forest Inventory 2013).
Predicting fire behaviour in black spruce forests is of particular
importance because these stands support high intensity crown

fires. In this paper, we investigate the relationship between ALS
data and canopy fuel attributes measured in boreal black spruce
stands in Alberta, Canada. We use least absolute shrinkage and

selection operator (lasso) regression to model the relationship
between ALS data and five canopy fuel attributes: canopy bulk
density, canopy fuel load, stem density, canopy height and canopy

base height. Implications for fuel mapping and fire behaviour
modelling are discussed.

Methods

The objectives of this study were to develop statistical regres-
sionmodels for estimating canopy fuel characteristics fromALS

data in black spruce forests. Field plots were established in black
spruce stands and measured to calculate canopy height, stem
density, CBH, CFL and CBD. Airborne Laser Scanning data

were collected over the study sites and processed to produce
metrics that were related to the field data using lasso regression.
A schematic overview of themethods used in this study is shown
in Fig. 1.

Study area

Pure black spruce stands were selected for analysis to
represent a range of natural and managed stand structures
characteristic of the boreal region. In this study, managed

stands refer to forests that were subjected to thinning and
pruning treatments to reduce potential fire behaviour,
typically in the vicinity of values such as communities.
In total, 79 circular fixed inventory plots were analysed at two

study sites in north-western Alberta (Fig. 2) that afforded both
ease of access and a broad range of managed and natural stand
densities: Pelican Mountain (59 stands), a fuel and fire

behaviour research site operated by Alberta Agriculture and
Forestry (Fig. 3a); and Conklin (20 stands), a small hamlet
surrounded by both natural and managed black spruce stands

(Fig. 3b).
The structure of black spruce stands varies naturally

from stringers in open bogs to open black spruce woodlands

(,2000 stems ha�1) to very dense black spruce forests
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Fig. 1. Schematic diagram of the data processing and modelling methods

used to compare Airborne Laser Scanning (ALS) data to field measurements.
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(.35 000 stems ha�1) (Jean et al. 2020). Managed stands

approximate stand structures found in low density black spruce
forests and were included in this study to provide a range of

stand densities within the localised study area. Including man-

aged stands in this study also allows for results to be applied to
both natural and managed stand structures.
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Fig. 3. (a) The Pelican Mountain Research Site and (b) Conklin community study area are both composed of unmanaged and managed forest.

Managed forest stands have undergone stem thinning and have had the lower branches removed on remaining trees. Sampling plots (n ¼ 79) were

established to capture the full structure variability of black spruce stands across the research site.
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Fig. 2. Location of the study area within Alberta, Canada and location of the Pelican Mountain Research Site and

community of Conklin within the study area. Major highway numbers are labelled.
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Characteristics of the Pelican Mountain and Conklin study
sites are detailed in Table 1. Plot locations were selected using

satellite imagery and site visits. Sample plots were located in
varied stand structural conditions associated with natural,
recentlymanaged (1–2 years post-treatment) and oldermanaged
(7–17 years post-treatment) stands of pure black spruce. Dead

branches draped with bearded lichens were common, and tree
crowns in unmanaged stands extended to or near the ground.
Forest floor conditions within the plots was often a nearly

continuous cover of feather mosses, dominated by big red stem
moss (Pleurozium schreberi) with occasional small hummocks
of sphagnum moss, primarily common brown sphagnum

(Sphagnum fuscum). Surface vegetation was dominated by
Labrador tea (Ledum groenlandicum), lowbush cranberry
(Vaccinium vitis-idaea), blueberry (Vaccinium myrtilloides)
and bog cranberry (Vaccinium oxycoccos). Downed woody

debris was largely absent in the natural stands, with a moderate
presence in treated stands. Most sites had a thick organic layer,
often .40 cm in depth.

Field measurements

At each plot, all trees with a height .1.3m were measured to
record species, status (live or dead), tree height, diameter at

1.3m (DBH, diameter breast height), and the vertical distance
between the ground and the base of live crown foliage. All
height measurements were collected using a Haglöf Sweden�
Vertex instrument, and DBH was measured using tree callipers.
All vegetation with a height ,1.3m was deemed part of the
surface or ladder fuel complex and omitted from canopy fuel
measurements. The 1.3mheight threshold used to demarcate the

lower limit of the canopy fuel strata is lower than the 2m
threshold used in other studies (e.g. Alexander and Cruz 2014),
owing to the relatively short stature of the black spruce stands

under investigation. The default sampling radius for ground
plots was 3.57m (76 plots). A larger 5.64m radius was used
when ,20 trees occurred within the default sampling area (3

plots). Plot positions were determined to an average horizontal
accuracy of 0.39m using a Trimble� Geo7X global navigation
satellite system device with a Trimble� Tempest Antenna

(Sunnyvale, CA).
Field measurements were used to calculate plot-level canopy

fuel attributes with the statistical software package R (R Core
Team 2018). Canopy height (m) was defined as the tallest tree

within the sampling area. Maximum tree height was used to
represent stand height in this forest type due to the small plot size
and presence of abundant small and stunted trees. Canopy base

height (m) was calculated following Van Wagner (1977) as
the average live crown base height for all live trees within the
sampling area. Stem density (stems ha�1) was calculated as the

sum of all trees .1.3m in height divided by the plot area.
Canopy fuel load (CFL, kg m�2) was defined as the canopy

biomass per unit area available for combustion during the

flaming stage of a passing canopy fire. Foliage and fine branch-
wood less than 1.0 cm in diameter were included in the CFL
calculations following Stocks et al. (2004). Published allometric
equations based onDBH and species type were used to calculate

the mass of available canopy fuel for each tree over 1.3m in
height (Table 2). Canopy fuel load (kgm�2) for the plot was then
calculated as follows (Eqn 1):

CFL ¼ SCFi

a
ð1Þ

where CFi is the mass (kg) of canopy fuel contributed by an
individual tree and a is the sampling area of the plot (m2). For
dead trees, dead branchwood less than 1.0 cm was included in

the calculation, but it was assumed that no foliage was present.
Occasionally, conifer species other than black spruce were
within the sample plots. Conifer species included in canopy

fuel load calculations and associated allometric equations are
listed in Table 2. Broadleaved trees do not contribute to canopy
fuel load and were omitted from analysis.

Allometric equations for estimating crown fuel load are
representative of natural, unmanaged crown morphology. In
managed stands, where pruning is used to remove crown fuels

on the lower portion of the tree bole, estimated crown fuel load
was reduced proportionate to the reduction in crown length
following fuel treatments. Post-treatment crown length was
calculated from field measurements as the difference between

tree height and crown base height. Pre-treatment crown length
was estimated from the statistical relationship between tree
height and live crown base height (Fig. 4), which was derived

with linear regression from data collected in natural, unmanaged
black spruce stands at Pelican Mountain and Conklin (Eqn 2):

CBHni ¼ 0:53� hi þ 0:15 ð2Þ

where CBHni (m) is the estimated pre-treatment, natural crown

base height of an individual tree and hi is tree height (m). The
equation used to estimate crown fuel load of pruned trees in
managed stands is as follows (Eqn 3):

CFpi ¼ CFni � hi � CBHpi

hi � CBHni

� �
ð3Þ

whereCFpi is themass (kg) of canopy fuel following pruning for
the ith tree, CFni is the mass (kg) of canopy fuel given an
unpruned, natural tree crown and the allometric equations from

Table 2, and CBHpi is the field-measured post-treatment crown
base height (m) following pruning.

Canopy bulk density (CBD, kg m�3) is the amount of fuel
available for combustion during the passage of the fire front per

Table 1. Study site descriptions for Pelican Mountain and Conklin

Pelican Mountain Conklin

Study area location (degrees north, degrees

west)

55.7008,

113.5689

55.6323,

111.0838

Study area size (km2) 1.2 10

Elevation (m) 590–657 530–624

Stand agesA (years) 40–100 40–110

Total plots established

(control/managed stands)

59 (31/28) 20 (8/12)

Years since treatment for

managed stands

0–2 7–17

Years that summer sampling took place 2017–2019 2018–2019

ABased on tree core samples taken 0.25m in height.
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unit volume and was calculated following the same methodol-
ogy as the Fire and Fuels Extension to the Forest Vegetation
Simulator (FFE-FVS) (Reinhardt and Crookston 2003; Rebain

et al. 2010). For each individual tree, a uniform distribution of
fuels was assumed between the crown base height and height of
the tree. Using the crown position above the ground, the fuel
density for all trees within the plot was summed in 0.3m

horizontal increments from the ground to the top of the canopy.
Canopy bulk densitywas defined as themaximum4.6m running
mean of crown fuel density for the plot, as per FFE-FVS. It

should be noted that the FFE-FVS only counts conifer trees over
1.8 m tall towards canopy fuels (Rebain et al. 2010). In this
study, a slightly shorter threshold of 1.3 m was used because

black spruce stands are typically stunted due to poor growing
conditions, yet smaller trees still contribute significantly to the
canopy (Johnston et al. 2015).

Airborne Laser Scanning data

Discrete return multi-spectral ALS data were acquired for both
study sites in August 2018 using a Teledyne Optech Titan

multispectral sensor mounted on a Piper Navajo aircraft. This

system emits 3 independent laser pulses in the 1550 nm (short
wave infrared), 1064 nm (near infrared) and 532 nm (green)
wavelengths. Metadata for the LiDAR system settings, flight

parameters and data are shown in Table 3. The University of
LethbridgeARTEMis laboratory collected and preprocessed the
data using the LiDAR Mapping Suite (LMS, proprietary soft-
ware from Teledyne Optech) to generate a point cloud for each

channel. The point clouds for each dataset were merged into a
single dataset using the MergeData tool in FUSION (Version
3.80, McGaughey 2018a), an open source software specialised

for LiDAR data processing. The GridSurfaceCreate tool within
FUSIONwas used to generate a 1-m resolution digital elevation
model (DEM) with returns that were classified as ground points.

The elevation of ALS returns were calculated to height above
the ground by subtracting the elevation from the DEM. The
mean point density of the ALS datasets were 10.5 pulses per m2

and 11.3 pulses per m2 for Pelican Mountain and Conklin,
respectively.

Processing and analysis of ALSdatawas generally consistent
with procedures and recommendations outlined in White et al.

(2013, 2017). The FUSION PolyClipData tool was used to cut
ALS point clouds to each sample plot boundary. Airborne Laser
Scanning point coordinates were transformed to height above

ground with the DEM to enable comparisons across sample
plots. Plot metrics were calculated using the CloudMetrics tool
in FUSION. Procedures for calculating plot metrics are detailed

in the FUSION software manual (McGaughey 2018b). Returns
of LiDARpulses,1.3m above groundwere excluded to restrict
data points to the canopy fuel stratum under analysis. Fifteen
candidate ALS variables known to have relationships with

forestry metrics from previous studies (e.g. Andersen et al.

2005; Erdody and Moskal 2010; Bright et al. 2017) were
calculated with FUSION and output in the plot-level ALS

metrics dataset (Table 4). ALS-based predictor variables con-
sisted of a variety of height and strata metrics.

Model development and evaluation

We applied lasso regression in R with the ‘glmnet’ package

(Friedman et al. 2010) to model the relationship between ALS
point cloud metrics and canopy characteristics estimated from
field measurements. Lasso (i.e. least absolute shrinkage and

selection operator) was chosen for this analysis because it uses

shrinkage (which reduces the coefficients of the variables) to
generate simple prediction models that account for collinearity

Table 2. Species-specific allometric equations used to calculate tree-level canopy fuel mass (CFi, kg m22)

Tree diameter at breast height (DBH) measurements are made in cm

Species Source for calculating

canopy fuel load

Equation

Black spruce (Picea mariana) Alexander et al. (2004) CFi¼ 0.23317(DBH)1.25384þ 0.13267(DBH)1.11546þ 0.05553(DBH)1.12281þ 0.04995(DBH)1.29626

þ 0.000167(DBH)3.81224

Jack pine (Pinus banksiana) Alexander et al. (2004) CFi¼ 0.00672(DBH)2.25699þ 0.00478(DBH)2.08881þ 0.00824(DBH)1.88877þ 0.00105(DBH)2.43234

þ 0.00161(DBH)2.30592

Lodgepole pine (Pinus contorta) Johnson et al. (1990) CFi¼ 0.0525(DBH)1.6057þ 0.0533(DBH)1.8052þ 0.1369(DBH)1.3553

White spruce (Picea glauca) Johnson et al. (1990) CFi¼ 0.6373(DBH)1.1457þ 0.0869(DBH)1.8938þ 0.0304(DBH)1.7481
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black spruce trees from unmanaged stands used in this study.
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between predictor variables (Tibshirani 1996; Babyak 2004). To

satisfy the assumptions of linearity between the dependent and
independent variables, a square root transformation was applied
to CFL, CBD, stem density and CBH. Sample plots were

randomly pooled into training (52 plots) and validation (27
plots) datasets. A linear regression model was fitted to each
response variable (stand height, sqrtCFL, sqrtCBD, sqrtDensity

and sqrtCBH) in the training dataset using the cv.glmnet func-
tion. To enable reproducible results, the set.seed value was set to
‘123’. The set.seed function divides the data into training and

testing datasets randomly, but by setting a value (i.e. 123) it
ensures the training and testing datasets are always composed of
the same data subset each time the script is executed. When

performing lasso regression, l is used to determine the amount
of shrinkage of the coefficients. When l is zero, the resulting
regression model is equivalent to least square estimates. As the
value of l increases, shrinkage occurs so variables that are not

good predictors can be removed from the regression model. To
obtain the optimal value for lambda, 10-fold cross validation
with mean squared error was used. Performance of each

regression model was evaluated on the training and testing data
using the coefficient of determination (R2, R2

test) and root mean
squared error (RMSE, RMSEtest). Similar values between the

training and testing data indicate that the regression model has
good predictive capabilities.

Results

Field measurements of canopy and stand characteristics are
summarised in Table 5. Both sites captured awide range of stand

characteristics, and there was sufficient overlap between natural
and managed stand attributes. Selected regression models for
estimating each canopy fuel attribute are shown in Table 6.

Regression models for all stand attributes except CBH per-
formed well, with R2 values ranging 0.81–0.89 for the training
dataset and 0.78–0.85 for the test dataset. The RMSE and

RMSEtest values are also close enough to conclude that all
regression models except for CBH are suitable for generalised
use whereby predictions are generated with new data that was
not used in the modelling process.

Table 3. Airborne Laser Scanning (ALS) flight parameters and system settings

Abbreviations: altitude above ground level (AGL), channel 1 (C1), channel 2 (C2), channel 3 (C3), pulse repetition frequency (PRF)

Parameter Study area

Pelican Mountain Conklin

Area (ha) 150 1000

Survey date 19 August 2018 18 August 2018

LiDAR sensor channels (C1, C2, C3) Teledyne Optech Titan (1550 nm, 1064 nm,

532 nm)

Teledyne Optech Titan (1550 nm, 1064 nm,

532 nm)

Camera sensor CM-6500 (35mm) CM-6500 (35mm)

Survey altitude (AGL) 1000m 1000m

PRF (total/per channel) 300 000/100 000 300 000/100 000

Scan frequency 32 32

Scan angle, full (degrees) 50 50

Side overlap (planned) 50% 50%

Camera overlap (along, across) 30%, 50% 30%, 50%

Aircraft speed (m s�1) 68 70

Point density, planned single returns (total points m�2/

per channel points m�2)

9/3 9/3

Point density, multiple returns (all, C1, C2, C3) 10.5, 4.8, 4.4, 1.3 11.3, 5.1, 4.7, 1.5

Datum NAD83 CSRS Epoch 2002, UTM zone 12,

ellipsoidal heights

NAD83 CSRS Epoch 2002, UTM zone 12,

ellipsoidal heights

Table 4. FUSION plot metrics (McGaughey 2018b) included in lasso

regression modelling

All height measurements are in metres

Source Predictor

name

Metric description

First returns above 1.3m

height threshold

hmax Maximum height

hmean Mean height

hCV Coefficient of variation

for heights

h25 Height of 25th percentile

h50 Height of 50th percentile

h75 Height of 75th percentile

h90 Height of 90th percentile

h99 Height of 99th percentile

Pc1.3 Percentage first returns above

1.3 m

Pcmean Percentage first returns above

mean height

All returns, including

ground and nonground

Prop,0.15 Percentage of first returns

,0.15 m

Prop0.15to1.30 Percentage of first returns

.0.15m and #1.30 m

Prop1.30to5.00 Percentage of first returns

.1.30m and #5.00 m

Prop5.00to10.00 Percentage of first returns

.5.00m and #10.00 m

Prop10.00to20.00 Percentage of first returns

.10.00m and #20.00 m
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Scatter plots of observed versus predicted values (Fig. 5)
further confirmed goodness of fit. Data points for natural and

managed stands exhibited a consistent trend and were therefore
grouped for analysis. Data points for all regression models apart
from stem density and CBH exhibited symmetrical scatter
around the 1:1 line of perfect agreement, indicating good model

fit. The stem density regression model showed bias towards
underpredicting high field-measured values. This bias was also
slightly apparent with the CBD and CFL regressionmodels. The

canopy height regression model showed some bias at over-
predicting low field-measured values (,7.5 m). The scatter plot
for the CBH regression model shows significant scatter around

the 1:1 line indicating poor predictive ability.
The regression models derived in this study can produce

significantly more detailed forest structure maps compared to
the FBP fuel type maps (Fig. 6a). Photographs of canopy

structure taken from the field sampling plots indicate that the
models are able to correctly capture the natural variability of
canopy bulk density in black spruce stands (Fig. 6b, c).

Discussion

Black spruce stands can be found in abundance in all Canadian

provinces and territories (National Forest Inventory 2013). The

black spruce stands analysed in this study represent typical black

spruce stands observed throughout the boreal forest (Forestry Fire

Danger Group Canada 1992; Johnston et al. 2015). Results

indicate that ALS data are able to describe black spruce forest

structure characteristics important to wildfire behaviour at a fine

scale. Five canopymetrics of interest were evaluated in this study

(CFL, CBD, canopy height, stem density and CBH), and all

models comparing field-measured data to ALS metrics had R2

values$ 0.81 except for CBHwhich had anR2 value of 0.63. The

ability to use these statisticalmodels andALS data tomap fuels at

a fine resolution could have profound impacts for fire manage-

ment practices and the underlying fire research and decision

support tools that guide them. Availability of detailed fuel attri-

butes will enable development of new empirical models that

relate ALS-derived forest structural attributes to observed fire

Table 5. Stand and canopy characteristics of field-measured black spruce stands by status (a) natural/unmanaged, (b) managed and (c) combined

and study area (Pelican Mountain, Conklin)

Descriptive statistics of range, mean and standard deviation (s.d.) are shown by stand status to document variation in data sources. All data were combined

irrespective of stand status for analysis and model building

Range Mean s.d. Range Mean s.d.

(a) Unmanaged stands Pelican (31 plots) Conklin (8 plots)

Tallest tree height (m) 5.5–13.1 8.7 2.2 9.9–15.7 11.5 2.3

Stem density (tree ha�1) 3996–35 989 14 711 6577 5320–33 967 14 536 9413

Canopy fuel load (kg m�2) 1.10–6.57 3.31 1.22 1.54–6.63 3.72 1.48

Canopy bulk density (kg m�3) 0.17–1.06 0.57 0.19 0.24–1.07 0.55 0.24

Canopy base height (m) 1.17–3.83 2.19 0.75 1.25–3.95 2.64 0.79

(b) Managed stands Pelican (28 plots) Conklin (12 plots)

Tallest tree height (m) 4.5–11.3 8.7 1.8 2.6–17.2 10.6 4.3

Stem density (tree ha�1) 250–3497 1629 877 749–4995 2529 1339

Canopy fuel load (kg m�2) 0.08–2.12 1.02 0.51 0.07–4.59 1.69 1.43

Canopy bulk density (kg m�3) 0.02–0.34 0.19 0.09 0.03–0.62 0.24 0.19

Canopy base height (m) 1.56–5.48 3.45 0.91 0.32–5.13 2.44 1.53

(c) All data Combined (79 plots)

Tallest tree height (m) 2.6–17.2 9.3 2.6

Stem density (tree ha�1) 250–35 989 8206 8156

Canopy fuel load (kg m�2) 0.072–6.63 2.30 1.55

Canopy bulk density (kg m�3) 0.02–1.07 0.38 2.72

Canopy base height (m) 0.32–5.48 2.72 1.10

Table 6. Lasso linear regression models and performance metrics predicting the square root of canopy bulk density (CBD), square root of canopy

fuel load (CFL), square root of stem density, stand height and square root of canopy base height (CBH) using ALS data

Models were generated using 52 observation points and performance metrics were evaluated on 27 data points.

Equation R2 R2
test RMSE RMSEtest

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBD kg m�3ð Þp ¼ 0:63þ 0:0032ð ÞPc1:30 þ 0:0000075ð ÞPcmean þ �0:40ð ÞPropo0:15 þ 0:013ð ÞProp1:30to5:00 0.84 0.78 0.087 0.098ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CFL kg m�2ð Þp ¼ 1:11þ 0:012ð ÞPc1:30 þ �0:49ð ÞPropo0:15 0.84 0.85 0.23 0.22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stem density stems ha�1ð Þp ¼ 57:96þ �3:27ð Þhmean þ �3:28ð ÞhCV þ 0:61ð ÞPc1:37 þ �23:22ð ÞPropo0:15

þ 123:99ð ÞProp1:30to5:00
0.89 0.81 15.24 23.24

Height (m)¼ 2.71þ (0.79)hMax 0.81 0.84 1.29 0.96ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CBH mð Þp ¼ 1:02þ 0:19ð Þh25 0.63 0.51 0.24 0.20
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Fig. 5. Plot level (a) square root transformed canopy bulk density, (b) square root transformed canopy fuel load,
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estimated from ALS data (n ¼ 27) for the testing dataset (predicted) versus field-measured values (observed).

Solid line shows 1:1 relationship denoting perfect model fit.
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occurrence and fire behaviour. Ongoing enhancements to the

Canadian Forest Fire Behaviour Prediction (FBP) System
(Canadian Forest Service Fire Danger Group 2021) have been

designed to accommodate new and emerging sources of infor-
mation about forest structure and composition that could be

supplied by ALS-generated fuel maps. High resolution fuel maps

could also be used to inform strategic fire risk assessments and
prioritise proactive mitigation measures such as fuel treatments,

as well as monitor forest structural changes over time and in
response to management actions. Similar studies completed for

other forest types have reported varying degrees of success when

comparing ALS data with field-based measurements of forest
characteristics important towildfire (Table 7); however, results of

this study were designed to map forest attributes at a much finer

scale (40 m2 resolution) compared with the published studies
listed in Table 7. Regressionmodels performed similarly or better

than those estimated for other stand types in prior studies with the
exception of the CBH regressionmodel, which performed poorly

in comparison. The canopy height regression model performed
similarly to other studies but not as well as expected. Given the
relatively high density of theALS datawe had expectedR2 values
similar to those derived in Andersen et al. (2005) and Erdody and

Moskal (2010) studies (i.e. .0.90). This may reflect the shorter
canopy heights of the black spruce stands included in the present
study, which had an average stand height of 9.3 m compared with

average stand heights .11.9 m associated with the forest types
investigated in the studies listed in Table 7.

CBD, CFL and stem density regression models under-

predicted at the high-end range of values (Fig. 5). This may be
an artefact of the lasso method, which shrinks the coefficients to
create a ‘flatter’ model. This introduces a small amount of bias
with the objective of decreasing the variance of the model and

C-2

High: 1

FBP fuel type

CBD (kg m–3)

(a) (b) (c )

Low: 0

Water

Pelican Mountain Research Site

Sampling plot

Pelican Mountain Research Site

Not black spruce

Other fuel type

Fig. 6. (a) The Fire Behaviour Prediction (FBP) fuel typemap shows that PelicanMountain is almost entirely covered by theC-2 boreal spruce fuel

type. The ALS-derived fuel attributes show that canopy bulk density can vary substantially within black spruce stands; (b) model results also

correspond well with field photos that show the model is accurately detecting areas of high (c, top), intermediate (c, middle) and low (c, bottom)

canopy bulk density values (Photographer: Hilary Cameron (author)).
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increasing predictive power. It could also be due to other factors,
given that prior studies that related ALS data to CBD and CFL

also under-predicted at the high-end range of values, even when
lasso regression was not employed. For example, Hermosilla
et al. (2014) reported similar findings in predictions of CBD

from ALS data in mixedwood forests and suggested the under-
prediction was caused by outliers. Predicted versus observed
CBD values reported by Erdody and Moskal (2010) and Ander-
sen et al. (2005) also exhibited underprediction at the high end of

the range. These discrepancies could also be due to the nature of
forest structure andALS data. In very dense stands, whichwould
be associated with high values of CFL and CBD, the ALS laser

pulse will be obscured by the continuous upper canopy vegeta-
tion, inhibiting reflectance and leading to occlusion of data at
lower elevations (e.g. Vauhkonen et al. 2012; Kandare et al.

2016). Further studies of how stand density impacts occlusion in
black spruce stands are required to confirm the underlying
factors responsible for underprediction of CBD and CFL from

ALS and potentially correct any inherent bias through data
transformation (e.g. Lefsky et al. 2002).

Underprediction at the high-end values could also be due to
the use of fixed interval height metrics. For example, if dense

stands happen to be stunted, then ALS metrics such as the
percent of first returns above 1.3 m (Pc1.3) may be smaller than
that for taller stands. This would occur when the ALS laser pulse

has a shorter travel distance through the canopy to reach the
height threshold. Given the volume of ALS models that have
been developed using height strata values (e.g. Andersen et al.

2005; Erdody and Moskal 2010; Bright et al. 2017; Engelstad
et al. 2019), more research is needed to investigate the effects of
fixed height variables on model results.

Results of this study confirm the widely acknowledged
limitation of ALS data for predicting stem density (e.g. Kandare
et al. 2016). In addition to underprediction of high-density field-
measured values, the relatively large differences between the

RMSEandRMSEtest values for the stemdensity regressionmodel
indicate overfitting of the training dataset. Despite these issues,

the R2
test values were similar or better than those reported by

Treitz et al. (2012) andLuther et al. (2014), who both relatedALS
data to black spruce forest characteristics in eastern Canada.

Despite prior studies successfully predictingCBHusingALS
data, our results indicated the success of a CBH regression
model likely depends on vegetation type. When the understorey
vegetation is close to the base of the canopy, it can be difficult to

define CBH using ALS (Popescu and Zhao 2008). Black spruce
trees tend to have crowns that extend to the forest floor with a
build-up of dead branches and lichen. The relatively poor CBH

regression model generated support that ALS data is not well
suited for measuring the distance between the ground and the
base of the canopy in stands where tree morphology includes

crown vegetation that extends continuously from the top of the
tree to the forest floor. Given that vertical fuel connectivity in
black spruce dominated stands is a determinant of wildfire

behaviour, future studies could focus on relating ALS to the
vertical continuity of canopy fuels, rather than CBH. It would
also be beneficial for future studies to explore the use of ALS to
predict surface fuel loads (e.g. Stefanidou et al. 2020).

It is also noteworthy that the CFL, canopy height and CBH
regression models had smaller RMSEtest values compared with
RMSE values. Although differences were small, this was unusual

given that the regression model was designed to fit the training
data best. The lower testing errorsmay indicate that the regression
models were generalising well and were able to properly adapt to

new data. It could also reflect the relatively small size of the
testing data and random chance. If the testing error was much
larger than the training error, it could indicate that the training and

testing groups were not randomly selected. Given that the errors
were similar in value, this was likely not the case for the
regression models developed in this study and it can be assumed
that the low testing errors were due to random chance.

Table 7. Basic site descriptions and coefficient of determination values (R2) for previous studies that utilisedAirborne Laser Scanning (ALS) data to

predict forest characteristics important to wildfire behaviour

Modelled attributes include canopy bulk density (CBD), canopy fuel load (CFL), stem density, canopy height and canopy base height (CBH) values. For

comparison, R2 values using the testing data for regression models derived in this study are also shown

R2 by modelled canopy characteristic/range of

field-measured values

Author Study site description Grid resolution

(m2)

CBD CFL Stem density Canopy

height

CBH

Andersen et al. (2005) Capital State Forest in western Washington State 900 0.84A 0.86B n/a 0.98 0.77

Erdody and Moskal (2010) Ponderosa pine stands in eastern Washington State 400 0.83A 0.88A n/a 0.94 0.78B

Skowronski et al. (2011) Pinelands National Reserve of southern

New Jersey

400 0.83 0.71 n/a n/a n/a

González-Olabarria et al. (2012) Forested areas in the Mediterranean 500 n/a n/a 0.64 0.91 0.56

Hermosilla et al. (2014) Mixedwood forest in north-west Oregon 804C 0.67 0.79 n/a 0.79 0.78

Bright et al. (2017) Mountain pine beetle affected stands in a

coniferous montane forest in Colorado

200 0.46 0.56 n/a 0.66 0.28

Engelstad et al. (2019) Boundary Waters Canoe Area in northern Minnesota 100 0.48 n/a n/a n/a 0.7

Results from present study Black spruce stands in north-western Alberta 40 0.78B 0.85B 0.81B 0.84 0.51B

ANatural log-transformation was used in derived model.
BSquare root transformation was used in derived model.
CGrid resolution inferred from plot size as no maps were produced in study.
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Although results of this study are promising, sources of error
for this research include the following: human error during field
measurements; the influence of plot edge effects and the

assumption of stand homogeneity (White et al. 2013); use of
allometric equations to calculate canopy fuel load values; and
the time elapsed between field measurements and ALS data

collection. The small plot size used in this study, which allowed
for the high resolution of the produced models (White et al.

2017), increased the influence of edge effects due to the higher

perimeter to area ratio. The strong observed relationships
between field measurements and ALS metrics suggests the
small plot size was acceptable for our black spruce stands that
have a narrow columnar crown morphology, which may not be

the case for other stand types.
Given the prevalence of black spruce across Canada

(National Forest Inventory 2013), we expect the models devel-

oped in this study to be suitable for applied use by researchers
and fire managers for estimating stand structure in similar black
spruce ecosystems with structural characteristics that fall within

the range of variability observed in our source data. Stand
structural characteristics present at Pelican Mountain and Con-
klin research sites are unlikely to represent the full range of

variability in black spruce stands in the Canadian boreal forest.
To improve the robustness of the regression models, additional
plots could be collected for black spruce stands with a wider
range of structural variability. A larger sample size of field

measurements would also be expected to reduce bias observed
in some of the predictive regression models.

In conclusion, the results of this study indicate that ALS data

are a viable resource for predicting forest structural character-
istics important to wildfire behaviour in black spruce stands.
Timely and cost-effective mapping of canopy fuel character-

istics across large landscape areas could have a profound impact
on fire management practices and the underlying fire research
and decision support tools that guide them. This study confirmed
the potential to utilise ALS data to map canopy fuels in black

spruce forests at higher resolution than ever before. These data
could eventually be used to develop empiricalmodels predicting
fire behaviour and fire occurrence, and for strategic planning.

Management applications include documenting fuel structure
changes over time, prioritising stands for fuel treatments based
on stand structure, and documenting pre- and post-treatment

stand structure to determine whether hazard reduction targets
have been met. Mapping forest structure to the level of detail
analysed in this study could also have profound impact in areas

of research beyond wildfire management. For example, canopy
fuel information derived from themodels presented in this study
could be used to assess habitat suitability or ecological impacts
of disturbances (i.e. insect attack, wind damage, disease

epidemics) or to analyse post-harvest forest structure.
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