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Abstract. Understanding climate as a driver of low- to moderate-severity fires in the Montane Cordillera Ecozone of
Canada is a priority given predicted and observed increases in frequency and severity of large fires due to climate change.
We characterised historical fire-climate associations using 14 crossdated fire-scar records and tree-ring proxy reconstruc-

tions of summer drought and annual precipitation from the region. We compared fire-climate associations among years
when fires burned in multiple study areas. From 1746 to 1945, there were 32 years with moderate fire synchrony in which
four to six study areas recorded fire. During four high fire synchrony years, 7 to 10 study areas recorded fire. Below-

average annual precipitation and summer drought synchronised fires, whereas infrequent years of high fire synchrony
were preceded by a wet summer. After 1945, decreased fire occurrence and synchrony reflects fire exclusion, suppression
and climatic variation. Global climate change manifests as blocking high-pressure ridges that superimpose on longer fire-
seasons and increased droughts. Combined, theymake dry forests increasingly susceptible to synchronous fires, which are

difficult to suppress as observed during the record-breaking 2017, 2018 and 2021 fire seasons in British Columbia.
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reconstructions, Palmer Drought Severity Index.

Received 19 March 2021, accepted 26 October 2021, published online 19 November 2021

CSIRO PUBLISHING

International Journal of Wildland Fire 2022, 31, 67–80

https://doi.org/10.1071/WF21035

Journal compilation � IAWF 2022 Open Access CC BY-NC-ND www.publish.csiro.au/journals/ijwf

https://orcid.org/0000-0003-2384-8007
https://orcid.org/0000-0003-2384-8007
https://orcid.org/0000-0003-2384-8007
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Anthropogenic climate change is leading to prolonged drought
conducive to fire occurrence with high-severity impacts in for-

ests of western North America (Westerling 2016; Wotton et al.
2017; Hanes et al. 2019). Ultimately, this will result in more
frequent fires placing human communities at risk (Moritz et al.

2014; Sankey 2019). For example, within the Montane Cordil-
lera Ecozone of Canada, many large (.200 ha) forest fires,
including mega-fires (.10 000 ha; Stephens et al. 2014),

overwhelmed the deployment and control capabilities of fire
suppression organisations during the 2017, 2018 and 2021 fire
seasons (Natural Resources Canada 2021). Across the region,
these fire seasons coincided with record-breaking persistent

warm and dry weather conditions driven by anthropogenic cli-
mate change (Kirchmeier-Young et al. 2019). Such conditions
over the fire season lower forest fuel moisture content, and

facilitate the ignition, combustion and spread of fires (Gedalof
2011; Macias Fauria et al. 2011). Determining whether there is
historical precedence for similar fire synchrony across the

region is an important question that needs to be addressed to
support fire managers in anticipating potential climate change
impacts on fire regimes.

Associations between modern fire records and climate (i.e.
weather averaged over monthly to annual scales) have been
investigated across multiple regions of western North America,
largely focusing on the mid-20th to early-21st centuries given

the availability of modern fire records and instrumental climate
and drought records (Morgan et al. 2008; Littell et al. 2009;
Meyn et al. 2010a, 2010b; Westerling 2016). However, this

period overlaps with changes in fire management including
developments in fire suppression technology (Bowman et al.

2009; Flannigan et al. 2009), which can confound fire-climate

associations (Williams and Abatzoglou 2016). To avoid the
confounding effect of fire management, dendropyrochronolo-
gists test fire-climate associations over longer periods using
crossdated fire-scar chronologies and multi-century proxies of

temperature, precipitation or drought that extend before the 20th
century (Swetnam and Anderson 2008; Littell et al. 2016;
Williams and Abatzoglou 2016). Individual fire-scar chronolo-

gies and climate proxies provide study-area level baseline
information on the frequency of years with fire and the past
conditions in which they burned. When fire-history studies are

combined into regional networks, evidence of historical fire
synchrony (Swetnam 1993; Falk et al. 2011) and interannual
associations between synchronous fires and climate can be

deduced (Heyerdahl et al. 2008a, 2008b; Trouet et al. 2010;
Margolis and Swetnam 2013). Historical fire-climate associa-
tions can also be investigated at finer spatial scales through
spatially explicit prediction models applied to networks of

climate reconstructions (Heyerdahl et al. 2008b; Trouet et al.
2010). Thus, analysing historical fire-climate associations
across spatial scales can provide key insights on climate condi-

tions under which synchronous fires burned, and the potential
for future fire synchrony within the region.

Many of the fire-scar chronologies developed for the Mon-

tane Cordillera Ecozone and in the north-western USA were
collected in low- to mid-elevation coniferous forests with
mixed-severity fire regimes (Perry et al. 2011; Heyerdahl
et al. 2012; Marcoux et al. 2013; Harvey and Smith 2017;

Hessburg et al. 2019). Mixed-severity fire regimes are repre-
sented by fires that burn across space and time with a broad
range of severities, from low-severity surface fires to high-

severity crown fires (Perry et al. 2011; Daniels et al. 2017). The
range of fire severities is reflected by the spatial and temporal
variation in mortality effects on vegetation, and consequently

forest stands across the landscape are compositionally and
structurally diverse (Halofsky et al. 2011; Daniels et al. 2017).
Although climate is a well-documented top-down driver of fires

in this region (Heyerdahl et al. 2008b; Harvey and Smith 2017;
Chavardès et al. 2018), understanding the more nuanced influ-
ences of climatic variation on the range of fire severities remains
poorly understood.

In this research, we tested the hypothesis that spatio-temporal
variation in climate was an important driver of fire synchrony
within the Montane Cordillera Ecozone but that extreme

droughts facilitating synchronous fires across study areas were
relatively rare. Specifically, we address the following two
questions: (1) How frequently did historical fires burn synchro-

nously among study areas in the Montane Cordillera Ecozone?
(2) What climate conditions were associated with various levels
of fire synchrony? To answer these questions, we conducted a

meta-analysis of fire-scar records previously sampled in 14
study areas across the Montane Cordillera Ecozone and quanti-
fied the occurrence and frequency with which fires synchro-
nously burned in multiple study areas in a given year (i.e. fire

synchrony). We used regional climatic proxies for annual
precipitation and summer drought, and tested for associations
between climate and years of fire synchrony. We also applied

spatial interpolation with networks of climate reconstructions to
characterise fire-climate associations.

Methods

Study area

We analysed the crossdated fire-scar records previously col-

lected from 14 study areas located in the relatively dry forests of
the Montane Cordillera Ecozone (Fig. 1, Table 1). This ecozone
covers,30million hectares (ha) extending from the crest of the

Coast Mountains in southern British Columbia eastward across
the Rocky Mountains to the foothills in Alberta, Canada. Cli-
mate across theMontane Cordillera Ecozone is continental, with

maritime influences from the westerly flow of air masses from
the Pacific Ocean that are modulated by orographic uplift and
rain-shadow effects of the Coastal, Caribou, Columbia and

Rocky Mountain ranges (Fig. 1a; Ecological Stratification
WorkingGroup 1995). The study areas were distributed in about
3 million ha of forests in very dry and dry climatic subzones,
according to the biogeoclimatic classification (Pojar and

Meidinger 1991). Study areas 1–6 were within 20–215 km of
each other on the Central Interior Plateau but were 300–600 km
from study areas 8–14. Study areas 8–14werewithin 20–190 km

of each other in the Columbia and RockyMountains. Study area
7 was in an intermediate location, ,200 km south of areas 5–6
and 200 km west of areas 8–9.

Locally, topographic influences on climate contribute to
complex environmental gradients and diverse ecosystems dom-
inated by coniferous tree species, as follows (Fig. 1b; Pojar and
Meidinger 1991). The warmest and driest study areas were
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located on the Central Interior Plateau (study areas 1–4) or in dry

valley bottoms (study areas 5–7, 11) where bunchgrass (BG;
elevation¼ 150–600 m above sea level (masl)), ponderosa pine
(PP; 250–900 masl) and Interior Douglas-fir (IDF; 350–1450

masl) biogeoclimatic zones include open- and closed-canopy
forests composed of ponderosa pine (Pinus ponderosaDougl. ex
Laws.), Interior Douglas-fir (Pseudotsuga menziesii var. glauca

(Beissn.) Franco) and western larch (Larix occidentalis Nutt.).

In mountainous terrain, climate becomes cooler and more mesic

along the elevational gradient from valley bottoms to subalpine
forests. On the relatively dry, leeward side of the Caribou and
Columbia Mountains and in the Rocky Mountains (study areas

10, 12–14), forests of the Montane spruce (MS; 1250–1700
masl) zone are dominated by ponderosa pine, Douglas-fir,
western larch, lodgepole pine (P. contorta var. latifolia

Douglas) and hybrid spruce (Picea engelmannii Parry ex
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Engelm� Picea glauca (Moench) Voss). On the relatively wet,
windward side of theColumbiaMountains (study areas 8–9), the
diverse forests of the Interior cedar hemlock (ICH; 400–1500

masl) zone include all tree species from the MS zone, as well as
western red cedar (Thuja plicata Donn ex D.Don) and western
hemlock (Tsuga heterophylla (Raf.) Sarg.) on mesic sites.

Engelmann spruce and subalpine fir (Abies lasiocarpa Hook
(Nutt.)) dominate at the highest elevations (ESSF zone; 1500–
2300 masl), above the MS and ICH zones (study areas 8–9, 12).

All study areas are located in the Southern Cordillera
homogeneous fire regime zone delineated by Boulanger et al.
(2014). Using documented fire records (1959–1999), the authors
estimated 0.06% of the area burned from an average of 4.3 fires

per 100 000 km2 annually. Ignitions are strongly influenced by
lightning, particularly in July and August (Boulanger et al.

2014). Historically, mixed-severity fire regimes dominated as

indicated by abundant trees with multiple fire scars across
elevations and forest types (Table 1; Marcoux et al. 2013;
Hessburg et al. 2019). Surface fires were frequent at low- and

mid-elevations transitioning to infrequent crown fires in subal-
pine elevations (Marcoux et al. 2013; Hessburg et al. 2019).
Fire-scar records consistently show the near elimination of

surface fires starting in the late-19th to mid-20th centuries.
Effective fire suppressionwas preceded by extensive agriculture
and livestock grazing in valley bottoms, while colonisation by
Euro-Canadians ended cultural fire stewardship by Indigenous

people, whose oral histories convey prevalent fire use (Lewis
et al. 2018; Lake and Christianson 2019).

Historical fire records

We compiled crossdated fire-scar records representing histori-

cal fire occurrence in 14 study areas in the Montane Cordillera
Ecozone (Fig. 1, Table 1). Individual studies included 2–45
(median ¼ 25) plots, 43–162 (median ¼ 118) fire-scar samples

and 67–997 (median ¼ 296) crossdated fire scars (Table 1). To
allow direct comparison across all study areas, we defined the
start of the recording period as the year in which$2 living fire-

scarred trees were present and had the potential to re-scar in the
advent of subsequent fires. Fires recorded by $2 trees during a
given year were considered a ‘fire year’ (after Heyerdahl et al.
2008a). Within each study area, we calculated plot-level means

and ranges of scar-to-scar fire intervals from the start of the
recording period to the last scar. The probability of burning in
each year was calculated as the inverse of study-area overall

mean fire interval, multiplied by 100 to be expressed as a per-
centage. Fire years were composited into study-area level fire
records. For each year, the number of study areas recording a

fire year were summed, generating an ecozone-level composite
fire record. Based on the number of study areas recording a fire
in each calendar year, we designated four categories of syn-
chrony using criteria fromHeyerdahl et al. (2008a): (1) ‘low fire

synchrony’ for years with fire scars in one to three study areas,
(2) ‘moderate fire synchrony’ for years with fire scars in four to
six study areas, (3) ‘high fire synchrony’ for years with fire scars

in more than six study areas, and (4) ‘synchronous non-fire
years’ when no fires were recorded in any of the 14 study areas.
The seasonality of fires was interpreted for most, but not all, of

the fire-history studies. Most scars were dormant season scars,
which would have been caused by fires in mid to late summer
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(Heyerdahl et al. 2012; Harvey et al. 2017; Pogue 2017) or late
summer to fall (Daniels and Watson 2003; Cochrane 2007;
Daniels et al. 2007; Nesbitt and Daniels 2009), if caused by

lightning. Dormant-season fire scars can also be caused by
Indigenous fire stewardship commonly practised in fall or early
spring (Lake and Christianson 2019).

Reconstructions of regional climate

To represent climate throughout the Montane Cordillera Eco-
zone, we applied Principal Components Analysis (PCA) (SAS

Institute Inc. 2017) to derive regional-scale tree-ring proxy
reconstructions of precipitation and the Palmer Drought Severity
Index (PDSI), a drought index that combines the effects of tem-

perature and precipitation (Palmer 1965). We used 11 long site-
level reconstructions of annual precipitation (previous July to
current June) within the ecozone (Banff, Jasper and Waterton

Lakes, Alberta, and Big Creek, Cranbrook, Lillooet, Lytton,
North Thompson, Oliver, Summerland and Williams Lake,
British Columbia) (Watson and Luckman 2004) and recon-
structions of summer PDSI for 15 grid points encompassing the

study areas (grid points 23–25, 30–32, 41–43, 53–55 and 66–68;
Cook et al. 2004) (Fig. 1). To derive regional proxy reconstruc-
tions for annual precipitation and summer drought, we extracted

the first principal component (PC1) from the 11 reconstructions
of annual precipitation (PC1PPT) and the 15 reconstructions of
summer PDSI (PC1PDSI). We tested for linear correlation

between PC1PPT and PC1PDSI using a scatter plot and by calcu-
lating the Pearson product moment correlation between them.

Regional fire-climate associations

The common period between the ecozone-level composite fire
record and the two regional climate reconstructions, 1746–1945,
defined the period of analyses for fire-climate associations. The

period ends in 1945 to avoid the confounding influences of fire
exclusion policies imposed at the turn of the 20th century that
were reinforced by the introduction of organised and mechan-

ised fire suppression after 1945 in western North America (Pyne
1982, 2007; Keane et al. 2002; Donovan and Brown 2007).

Over the period of analysis, we used two approaches to test if
increasing fire synchrony was associated with warm and dry

regional climate. First, we compared values of each regional
climate reconstruction across categories of synchrony using box
plots and analysis of variance of ranks followed by post-hoc

Dunn’s tests (Gorvine et al. 2018). Second, we conducted
additional analyses on three subsets of years based on degrees
of synchrony (hereafter, collectively referred to as ‘synchronous

events’): (1) moderate–high fire synchrony were years when$4
study areas included scars (i.e. moderate and high fire synchrony
classes combined), (2) high fire synchrony, and (3) synchronous
non-fire years. To test the associations between synchronous

events and the regional climate reconstructions, we used Super-
posed EpochAnalysis (SEA) from the Fire History Analysis and
Exploration System developed by Brewer et al. (2015). To meet

the assumptions of SEA, we used Autoregressive Integrated
Moving Average (ARIMA) procedures to test for autocorrela-
tion with up to six lags then remove it from PC1PPT and PC1PDSI
(SAS Institute Inc. 2017). ARIMA procedures showed that
PC1PPT and PC1PDSI had temporal autocorrelation (P , 0.001

and P ¼ 0.016, respectively), so we fitted first order autore-
gressive process models and used the white noise residuals of
PC1PPT and PC1PDSI (white noise testsP¼ 0.881 andP¼ 0.595,

respectively) in SEA. For PC1PPT and PC1PDSI residuals, we
calculated mean values during the year coinciding with syn-
chronous events and the three preceding years and compared

them to bootstrapped values derived from a Monte Carlo
simulation of randomly selected years that provided 95%,
99% and 99.9% confidence intervals.

We visually depicted mean climate conditions for the three
sets of synchronous events: (1) years with moderate–high fire
synchrony, (2) years with high fire synchrony, and (3) non-fire
years, as well as climate conditions during four individual years

with high fire synchrony. To represent climate anomalies, we
calculated z-scores (Salkind 2007) for each of the 11 site-level
reconstructions of annual precipitation and used the summer

PDSI values for each of the 15 grid-point reconstructions.
We applied Inverse Distance Weighted (IDW) interpolation
(Bivand et al. 2008) to develop continuousmaps depictingmean

climate conditions during each type of synchronous event and
climate conditions during the four years with high fire syn-
chrony. To select a suitable combination of parameters that

optimised IDW interpolation, we conducted a sensitivity ana-
lysis. The parameters included a search neighbourhood of 38350

with a range of three to eight neighbours, a cell size of 08150 and
a power of two (Environmental Systems Research Institute

2018). To describe climate conditions and to colour-code the
maps, annual precipitation z-scores and summer PDSI values
were assigned to 1 of 11 classes ranging from ‘extremely wet’ to

‘extreme drought’ (Fig. 2).

Results

Historical fire records

The fire-scar records from the 14 study areas revealed abundant
fire activity (Fig. 3). In individual study areas, mean fire intervals

ranged from 21 to 57 years, with corresponding annual proba-
bilities of fire from 4.76% to 1.75%, respectively (Table 1).
Between 1746 and 1945, 179 fire years (89.5% of 200-year

period) were identified at the ecozone scale, with low, moder-
ate and high fire synchrony recorded in 143, 32 and 4 years,

Annual precipitation
z-scores

Summer PDSI
values

Extremely wet �0.90 �4.00
Very wet 0.89–0.70 3.00–3.99
Moderately wet 0.69–0.50 2.00–2.99
Slightly wet 0.49–0.30 1.00–1.99
Incipient wet spell 0.29–0.10 0.50–0.99
Near normal –0.09–0.09 –0.49–0.49
Incipient drought –0.29–0.10 –0.50–0.99
Mild drought –0.49–0.30 –1.00–1.99
Moderate drought –0.69–0.50 –2.00–2.99
Severe drought –0.89–0.70 –3.00–3.99
Extreme drought �–0.90 �–4.00

Category Colour

Fig. 2. Categories and thresholds for annual precipitation and summer

Palmer Drought Severity Index (PDSI; Palmer 1965).
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respectively. During those 200 years, only 21 years (10.5%)were
synchronous non-fire years. After 1945, 37 years (67.3%) were
synchronous non-fire years, while 16 and 2 years were fire years

in only one and two study areas, respectively.

Reconstructions of regional climate

Based on PCA, variances explained for PC1PPT (33%) and

PC1PDSI (77%) indicated the reconstructions of annual precip-
itation exhibited more spatial variability across the 11 sites than
the reconstructions of summer PDSI across the 15 grid points.

The diagnostic plot and Pearson product moment correlation
revealed amoderately strong positive linear correlation between
PC1PPT and PC1PDSI (r

2 ¼ 0.66, P , 0.001) (Fig. 4).

Regional fire-climate associations

Synchronous fire events were associated with distinct regional
droughts, indicated by low annual precipitation and negative
summer PDSI (Fig. 5). Temporally, the 36 years withmoderate–

high fire synchrony occurred at intervals of 1 to 26 years,
averaging five years between them. On average, annual pre-
cipitation was significantly drier in the year coinciding with fire

(P, 0.001) (Fig. 6a), and summer PDSI was significantly drier
both the year of fire (P , 0.001) and the previous year
(P, 0.05) (Fig. 6b). These climate associations were amplified

during the four years with high fire synchrony during the 1800s.
Fire was recorded in 10 study areas in 1831 and 1869 and in
seven areas in 1883 and 1896, recurring at intervals of 13 to
38 years, averaging 22 years. Annual and summer climate were

significantly drier than average in the year coinciding with fire
(P , 0.01 and P , 0.05, respectively), and summers were sig-
nificantly wetter than average three years before fire years

(P, 0.05) (Fig. 6c, d). In contrast, regional climate conditions

were significantly wetter than average during the 21 synchro-
nous non-fire years before 1945 (P , 0.01) (Fig. 6e, f).

Climatic conditions mapped across the Montane Cordillera
Ecozone also differed among the three sets of synchronous
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events (Fig. 7). On average, during the 36 years with moderate–

high fire synchrony, annual precipitation indicated normal
conditions to moderate drought (Fig. 7a) and summer PDSI
indicated incipient to mild drought (Fig. 7b). During the

four years with high fire synchrony, annual precipitation indi-
cated incipient to extreme drought (Fig. 7c) and summer PDSI
indicated mild to moderate drought (Fig. 7d). Spatially, drought

conditions tended to bemore pronounced in themountain ranges
to the east of theCentral Interior Plateau during synchronous fire
years. In contrast, during the 21 non-fire years both annual

precipitation and summer PDSI indicated mostly slightly wet
climate (Fig. 7e, f).

Drought varied spatially and temporally among the four
individual years with high fire synchrony (Figs 8 and 9).

Drought was most uniform in 1869, when annual precipitation
indicated extreme drought and summer PDSI indicated moder-
ate to extreme drought across the ecozone. In 1883, all fire-

history study areas were affected by drought, although part of
the ecozone had above-average precipitation. In 1831 and 1896,
fires were recorded across the ecozone, although drought was

more pronounced in the Columbia and Rocky Mountains than
along the Central Interior Plateau.

Discussion

Historically, low- to moderate-severity fires that scarred trees
were common and often burned synchronously in dry forests
located across the Montane Cordillera Ecozone of Canada. The
annual probabilities of fire ranged from 2% to 5% for individual

study areas, producing fire return intervals from 20 to 60 years.
Based on probability, had the fires been spatially and temporally

independent, the chance of just two study areas burning syn-

chronously is ,0.2% or once in 440 years. In strong contrast,
moderately synchronous fires burned in$4 of the 14 study areas
36 times during the 200 years before 1945, whereas highly

synchronous fires burned $7 study areas four times during the
1800s, averaging only 22 years between events. Spatially, our
study areas were separated and independent, with two minor

exceptions. Study area 10 was a pilot study focused on forests
with old-growth structures (Daniels et al. 2007; Daniels and
Gray 2007), and study area 13was a stratified-random sample of

old forests across the landscape (Cochrane 2007), although no
individual plots overlapped. Study areas 5 and 6were adjacent to
each other in the Stein River valley, separated by distance along
and elevation above the river channel (Heyerdahl et al. 2007,

2012). Temporally, our ecozone-level fire record showed that
90% of years between 1746 and 1945 had low to high fire
synchrony generally coinciding with droughts of various

degrees, corroborating findings across several regions of west-
ern North America (Heyerdahl et al. 2008a, 2008b; Trouet et al.
2010; Margolis and Swetnam 2013). Evidently, fires were not

temporally independent but were synchronised by fire season
weather and climate.

Fires synchronised by drought

Synchronous low- to moderate-severity fires that scarred trees
were facilitated by regionally dry climate. Tandem use of
summer PDSI and annual precipitation reconstruction networks
to test and characterise fire-climate associations in the Montane

Cordillera Ecozone highlighted the temporal sequence and
spatial patterns of climate conditions associated with high fire

Categories of synchrony
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synchrony. By applying two drought proxies, one for summer
and one for the year leading to and including peak fire season,
we found that high fire synchrony was associated with pro-

nounced droughts that lowered themoisture content of amixture
of forest fuel types facilitating the ignition and combustion of
fires at different locations in the ecozone.

The highly synchronous fires in 1831, 1869, 1883 and 1896,
when 7 to 10 of the 14 study areas burned, coincided with
pronounced drought during the summer preceded by low annual

precipitation particularly in the eastern parts of the Montane
Cordillera Ecozone. Low precipitation between fire seasons can
lead to low fuel moisture conditions in deep compact organic
matter in the soil and large-diameter woody fuels on the forest

floor at the beginning of the fire season in many regions of
western Canada (Lawson and Armitage 2008), including mon-
tane forests of south-eastern British Columbia (Chavardès et al.

2019).During the four yearswith high fire synchrony, our findings
suggest that fuels across most of the ecozone had low moisture
content even before peak fire season making themmore suscep-

tible to combust in the advent of an ignition. Synergistic with
annual precipitation, PDSI values during the summer revealed
regionally dry conditions implying fine fuels and the duff layer

were susceptible to readily ignite and then spread fire
(Chavardès et al. 2020). In addition to the association with

pronounced drought and low precipitation in the year of fire, we
found that high fire synchrony was associated with antecedent
summers that were wetter than average. In comparable dry

forests with similar species composition in western North
America, wetter than normal climate promotes the growth and
connectivity of fine fuels, which increases the likelihood of

enhanced fire spread when drier than normal conditions return
(Westerling et al. 2003; Collins et al. 2006).

Although high fire synchrony in the Montane Cordillera

Ecozone was driven by droughts extending from the previous
year into peak fire season, the magnitude of drought and
distribution of precipitation were spatially variable across the
ecozone during each of the four years with high fire synchrony.

For example, in 1831 and 1896, pronounced drought conditions
covered most of the ecozone except in the west, where condi-
tions were normal to moderately wet. Even under these condi-

tions, our western study areas included trees that recorded fires.
In low- tomid-elevation drymixed-conifer forests of the Central
Interior Plateau, like in the Cariboo represented by study areas

1–4 or the Stein River valley represented by study areas 5 and 6,
fuels can be sufficiently desiccated by relatively short periods of
warm, dry weather within the fire season overcoming annual-

scale climatic controls on fire occurrence (Heyerdahl et al. 2007,
2012; Harvey et al. 2017). As explained by Gedalof et al. (2005)
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andMacias Fauria et al. (2011), warm, dry or windy weather for
periods of only two to three weeks during the fire season can

lower the moisture content of grasses, fine surface fuels from
Douglas-fir and ponderosa pine, and the duff layer, enabling fire
ignition and spread. Following short fuel-drying periods, low- to

moderate-severity fires tend to scar rather than kill trees. Based
on the rich historical fire records pooled from our 14 study areas,
it appears that low- tomoderate-severity fires burned frequently,
even in wetter than normal conditions.

Factors driving regional drought

Understanding the drivers of fire-season drought is key for
anticipating and planning contemporary fire management. At
the inter-annual scale, historical fire synchrony in the Pacific

North-west region coincided with dry climate related to
warm phases of the El Niño–Southern Oscillation (ENSO) and
Pacific Decadal Oscillation (PDO; Kitzberger et al. 2007;
Heyerdahl et al. 2008b). Although these coarse-scale studies

included study areas in British Columbia, similar findings have
not been replicated for individual study areas in western
Canada. Fire-climate analyses using fire-scars by Schoennagel

et al. (2005), Harvey and Smith (2017) and Chavardès et al.
(2018) documented no significant relationships, whereas
Macias Fauria and Johnson (2006) reported cool phases of

ENSO and PDO coincided with increased fire activity in the
modern fire record over most of the Montane Cordillera

Ecozone. Improved understanding of how rain shadow effects,
climatic transition zones (Watson and Luckman 2005; Macias

Fauria and Johnson 2008; Harvey and Smith 2017) and tem-
poral instability (Knapp et al. 2002) influence ENSO and PDO
teleconnections within the Montane Cordillera Ecozone

remains a priority knowledge gap.
At intra-annual time scales of days to weeks, fire synchrony

coinciding with droughts is consistent with research on contem-
porary fires that show increased fire activity associated with

mid-tropospheric anomalies that form upper-atmosphere block-
ing ridges in western North America (Johnson and Wowchuck
1993; Skinner et al. 1999; Gedalof et al. 2005).Mechanistically,

blocking ridges weaken and displace the polar jet stream
northward, allowing regionally persistent warm and dry condi-
tions, which dry fuels and facilitate the ignition and spread of

fires (Jain and Flannigan 2021). Due to global climate change,
thesemanifestations are expected to increase in frequencywith a
diminished temperature gradient between the North Pole and
Equator leading to weaker mid-latitude winds in western North

America (Karnauskas et al. 2018).
Extreme temperatures, prolonged fuel drying and persistent

conditions conducive to fire (Jain and Flannigan 2021) typify

the 2017, 2018 and 2021 fire seasons in the Montane Cordillera
Ecozone in British Columbia. These three years set provincial
area-burned records of.868 000 to 1.3million hectares per year

(Natural Resources Canada 2021). In 2017,,530 000 ha burned
in dry forests of the province, encompassing plots in five of our
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14 study areas. Interestingly, this level of fire occurrence

indicated only moderate fire synchrony, despite the record area
burned at the provincial scale.

Changes during the 20th century

A decline in fire scar occurrence, indicating decreased low- to
moderate-severity fires across the Montane Cordillera Ecozone
after 1945, parallels findings from western North American

forests (Hessburg et al. 2019). Decreased fire occurrence
reflects disruption of Indigenous fire stewardship as early as the
late 1800s, imposition of fire exclusion policies at the turn of the

20th century (Lake and Christianson 2019), then modernisation
of fire suppression organisations after 1945 (Pyne 1982, 2007).
These human impacts were reinforced by a period of regional

climate that was less conducive to fire through the 1940s to
1970s (Meyn et al. 2010a; Daniels et al. 2011; Higuera et al.

2015). Although historical fire-weather data from the 20th
century show many fire seasons include days when fires could

have burned (Chavardès et al. 2019, 2020), ignitions were
readily suppressed, reducing the occurrence of synchronous
fires causing scars across our study areas. As a result of

decreased fire activity, forest demography analyses revealed
changes in fuel abundance and structure including persistent
ladder fuels and increased tree density and canopy closure in

many forests of theMontaneCordillera Ecozone (Marcoux et al.
2015; Harvey et al. 2017; Brookes et al. 2021), like in forests of

the western USA (Hessburg et al. 2019). Prolonged fire-free

intervals lead to an increase in fuel abundance in dry forests,
which in turn facilitate higher intensity fire, driving high tree
mortality with negative consequences for forest recovery

(Stephens et al. 2013; Stevens-Rumann et al. 2018; Leclerc et al.
2021). Combined with our findings that short-term variations in
weather interact with fuel abundance to drive fire occurrence,
the disruption of historical fire frequency may also mark the

onset of reduced forest resilience across the Montane Cordillera
Ecozone after the mid-20th century.

As the climate ofwesternNorthAmerica continues to become

more conducive to fire via increasing temperatures, prolonged
fire seasons and increasing lightning ignitions (Krawchuk et al.

2009; Flannigan et al. 2013), fire activity is also increasing.

Significant increases in annual area burned was first reported in
the western United States (Westerling et al. 2006; Higuera et al.
2015; Westerling 2016). In Canada, the number of large fires
(area . 200 ha) has doubled, and the annual area burned has

increased significantly since 1959, largely due to lightning-
ignited fires in northern and western forests (Hanes et al.

2019). Event attribution modelling of the 2017 wildfires in

British Columbia by Kirchmeier-Young et al. (2019) corrobo-
rates these findings in the Montane Cordillera Ecozone. They
showed that anthropogenic climate change drove maximum

temperature anomalies, increased area burned by at least
7-fold, and exacerbated fire behaviour by at least 2-fold.

1869

1883 1896

1831

Fig. 8. Mean annual precipitation z-scores interpolated across the Montane Cordillera Ecozone during

four years with high fire synchrony. As per thewetness scale of Fig. 2, darker tones of red and blue indicate

drier or wetter conditions, respectively, whereas grey indicates near normal conditions. Black circles with

white outlines indicate fire-history studies that recorded a fire during the given year, whereas open white

circles indicate fire-history studies that did not record a fire during the given year.
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Conclusion

Historically, fire synchrony was common in dry forests located
across the Montane Cordillera Ecozone in British Columbia,

Canada. Fire-scar records showed that moderate–high fire
synchrony, when 4 to 10 of our 14 study areas burned in the
same year, recurred 36 times over 200 years from 1746–1945,

or once every 5.5 years on average. Regionally dry climate in
the year leading to and during peak fire season synchronised
fires. Four years with high fire synchrony, or once in 50-year

events, coincided with pronounced droughts that were pre-
ceded by a wet summer that may have enhanced fine fuel
abundance and continuity. Decreased fire occurrence and

synchrony after 1945 were due to fire exclusion and suppres-
sion, reinforced by regional climate that was less conducive to
burning for several decades. In absence of fires, fuels have
accumulated, potentially increasing the intensity and severity

of fires when they burn. Combined with global climate change,
many dry forests of British Columbia are increasingly sus-
ceptible to synchronous fires that are difficult to suppress and

have high social-ecological costs, as observed in 2017, 2018
and 2021 when new records were set for area burned in the
province. In 2017, five of our 14 study areas burned, yet this

level of fire occurrence suggests only moderate fire synchrony,
despite the record area burned. Our analyses suggest that years
conducive to moderate–high fire synchrony, similar to or
exceeding that of 2017, are likely to recur in dry forests within a

decade. This prediction was realised in 2021, when ,1000
fires burned another ,700 000 ha of forests in dry regions of
the province (Natural Resources Canada 2021), although none
of the plots in our study areas reburned. Quantifying the

severity of contemporary fires and deciphering the influences
of weather and climate relative to fuel are critical next steps for
understanding the ongoing changes to fire regimes and effec-

tively adapting to future fire.
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Villemaire-Côté O (2014) Fire history near Cranbrook, British Columbia:

Historical reconstruction using tree-ring evidence. Undergraduate the-

sis, University of British Columbia, Vancouver, BC, Canada.

Watson E, Luckman BH (2004) Tree-ring based reconstructions of precipi-

tation for the Southern Canadian Cordillera. Climatic Change 65,

209–241. doi:10.1023/B:CLIM.0000037487.83308.02

WatsonE, LuckmanBH (2005) Spatial patterns of preinstrumentalmoisture

variability in the Southern Canadian Cordillera. Journal of Climate

18, 2847–2863. doi:10.1175/JCLI3416.1

Westerling AL (2016) Increasing western US forest wildfire activity:

sensitivity to changes in the timing of spring. Philosophical Transac-

tions of the Royal Society of London. Series B, Biological Sciences

371, 20150178. doi:10.1098/RSTB.2015.0178

Westerling AL, Gershunov A, Brown TJ, Cayan DR, DettingerMD (2003)

Climate andwildfire in thewesternUnited States.Bulletin of theAmerican

Meteorological Society 84, 595–604. doi:10.1175/BAMS-84-5-595

Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming

and earlier spring increase western US Forest Wildfire Activity. Science

313, 940–943. doi:10.1126/SCIENCE.1128834

Williams PA, Abatzoglou JT (2016) Recent advances and remaining

uncertainties in resolving past and future climate effects on global fire

activity.Current Climate Change Reports 2, 1–14. doi:10.1007/S40641-

016-0031-0

Wotton BM, Flannigan MD, Marshall GA (2017) Potential climate change

impacts on fire intensity and key wildfire suppression thresholds in

Canada. Environmental Research Letters 12, 095003. doi:10.1088/

1748-9326/AA7E6E

www.publish.csiro.au/journals/ijwf

80 Int. J. Wildland Fire R. D. Chavardès et al.

http://support.sas.com/documentation/cdl_main/94/docindex.html
http://support.sas.com/documentation/cdl_main/94/docindex.html
http://dx.doi.org/10.1890/04-1579
http://dx.doi.org/10.1007/S007040050095
http://dx.doi.org/10.1126/SCIENCE.1240294
http://dx.doi.org/10.1890/120332
http://dx.doi.org/10.1890/120332
http://dx.doi.org/10.1111/ELE.12889
http://dx.doi.org/10.1126/SCIENCE.262.5135.885
http://dx.doi.org/10.1071/WF08016
http://dx.doi.org/10.1029/2009GL041695
http://dx.doi.org/10.1023/B:CLIM.0000037487.83308.02
http://dx.doi.org/10.1175/JCLI3416.1
http://dx.doi.org/10.1098/RSTB.2015.0178
http://dx.doi.org/10.1175/BAMS-84-5-595
http://dx.doi.org/10.1126/SCIENCE.1128834
http://dx.doi.org/10.1007/S40641-016-0031-0
http://dx.doi.org/10.1007/S40641-016-0031-0
http://dx.doi.org/10.1088/1748-9326/AA7E6E
http://dx.doi.org/10.1088/1748-9326/AA7E6E

	WF21035_CO.PDF
	Regional drought synchronised historical fires in dry forests of the Montane Cordillera Ecozone, Canada

	WF21035_CO.pdf
	Regional drought synchronised historical fires in dry forests of the Montane Cordillera Ecozone, Canada




