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Contemporary (1984–2020) fire history metrics for the 
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ABSTRACT 

Background. Remotely sensed burned area products are critical to support fire modelling, 
policy, and management but often require further processing before use. Aim. We calculated fire 
history metrics from the Landsat Burned Area Product (1984–2020) across the conterminous 
U.S. (CONUS) including (1) fire frequency, (2) time since last burn (TSLB), (3) year of last burn, 
(4) longest fire-free interval, (5) average fire interval length, and (6) contemporary fire return 
interval (cFRI). Methods. Metrics were summarised by ecoregion and land ownership, and 
related to historical and cheatgrass datasets to demonstrate further applications of the products. 
Key results. The proportion burned ranged from 0.7% in the Northeast Mixed Woods to 74.1% 
in the Kansas Flint Hills. The Flint Hills and Temperate Prairies showed the highest burn 
frequency, while the Flint Hills and the Sierra Nevada and Klamath Mountains showed the 
shortest TSLB. Compared to private, public land had greater burned area (19 of 31 ecoregions) 
and shorter cFRI (25 of 31 ecoregions). Conclusions. Contemporary fire history metrics can 
help characterise recent fire regimes across CONUS. Implications. In regions with frequent 
fire, comparison of contemporary with target fire regimes or invasive species datasets enables 
the efficient incorporation of burned area data into decision-making.  

Keywords: burned area, cheatgrass, fire frequency, fire regime, fire return interval, historic 
fire, land ownership, Landsat, wildland fire. 

Introduction 

The contemporary wildfire paradox in the United States is that past fire suppression has 
led to larger and more intense fires, even as we have less fire now than occurred 
historically. As evidence, pre-European settlement estimates of fire frequency were 
much greater than contemporary fire frequency (Frost 1998; Guyette et al. 2012; Parks 
et al. 2015; Blankenship et al. 2021); however, over the past 30–40 years, contemporary 
fire seasons have become longer (Jolly et al. 2015; Cattau et al. 2020), and fires more 
frequent and larger (Dennison et al. 2014; Yang et al. 2015; Donovan et al. 2017;  
Singleton et al. 2019). Given these trends, the United States’ Healthy Forest 
Restoration Act of 2003 and the National Fire Plan’s Cohesive Strategy established a 
national commitment to reduce fire hazards and restore fire where it has been excluded 
(Keane et al. 2007; Schoennagel et al. 2009). Prescribed fire programs, an important 
component of this national strategy, attempt to restore historical fire regimes while 
potentially reducing the risk of large, high-severity wildfires (Ryan et al. 2013; Schultz 
et al. 2019). Balancing the risk of fire to human health and safety with the necessary role 
that fire plays in many ecosystems (Braun de Torrez et al. 2018; Wiesner et al. 2019;  
Kramer et al. 2021) requires improved data on contemporary fire history metrics. 
However, while national, fire-related datasets such as burned area (Hawbaker et al. 
2020a), wildfire risk to populations (Scott et al. 2020), and divergence from historical 
fire regime (Blankenship et al. 2021) datasets are all available, contemporary, national 
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fire history metrics, or a series of measures that help charac
terise the contemporary fire regimes and time since last burn, 
have not yet been produced or analysed for the U.S. Fire 
history metrics can help us both retrospectively characterise 
fire regime patterns and changes, while also helping to guide 
and prioritise future policy, management, or strategic actions. 

Fire and land management goals are often determined in 
the context of historical (i.e. pre-European settlement) fire 
frequency (Morgan et al. 2001; Blankenship et al. 2021). 
Historical fire frequency is predicted by ignition sources, as 
well as vegetation, fuel structure, weather, and climate 
(Frost 1998; Guyette et al. 2012) and can be reconstructed 
using fire scar chronologies, landform, historical vegetation 
records, charcoal, fire frequency indicator species, lightning 
ignition data, and remnant natural vegetation (Frost 1998;  
Morgan et al. 2001; Leys et al. 2017). For example, regional 
fire return intervals are typically derived from point-based, 
extended time series data, for example, tree or lake cores 
(e.g. McBride 1983; Mensing et al. 2006; Voelker et al. 
2018). In the Great Plains, for instance, there is ample 
evidence that many grasslands persisted before European 
settlement through the widespread application of fire by 
Native Americans (Frost 1998; Leys et al. 2017). 

Modern fire regimes are influenced by wildland fire sup
pression, the accepted U.S. policy for decades from the early 
1900s (Busenberg 2004), which reduced wildland fire 
occurrence in both fire-prone forests (Keane et al. 2007) 
and grasslands (Twidwell et al. 2013; Perkins et al. 2019). 
Fire suppression, with land use change, invasive species, and 
fragmentation, continues to impact current fire activity by 
influencing vegetation condition, as well as fire ignition and 
spread (Ryan et al. 2013; Roos et al. 2020). Since the mid- 
1980s, large wildfires in the Great Plains have been increas
ing (Dennison et al. 2014; Balch et al. 2017; Donovan et al. 
2017), and Southern California shows burning at higher 
frequencies than historically (Safford and Van de Water 
2014). Much of central and northern California, in contrast, 
has still missed multiple fire cycles (Safford and Van de 
Water 2014; Parks et al. 2015), so that despite large, high- 
profile fires in recent years (Nauslar et al. 2018; Keeley and 
Syphard 2021), risk of large, high severity fires in this 
region continues (Roos et al. 2020; Hagmann et al. 2021). 

The ability to implement national strategies to reduce fire 
hazards and restore historical fire regimes will depend at 
least in part on land ownership. Ownership influences the 
probability of fire ignition and spread, as well as fire-related 
incentives, priorities, and resources (Miller et al. 2012; Starrs 
et al. 2018). For example, agency-based and state-based 
differences in fire suppression strategies, wildland fire ser
vices, and prescribed fire programmes across the U.S. Federal 
Government has resulted in distinguishable fire regimes 
(Miller et al. 2012; Keeley et al. 2021). Further, federal 
land may show distinct conditions relative to non-federal 
lands (Joppa and Pfaff 2009; Ren et al. 2017), which can 
complicate comparisons of wildfire risk and total burned area 

(Andam et al. 2008; Starrs et al. 2018). While multiple U.S. 
agencies are tasked with reporting prescribed and wildland 
fires, most of these efforts are limited to public land (Short 
2015; Nowell et al. 2018; Fusco et al. 2019), meaning that 
private land tends to have less complete fire data and burn 
histories, relative to public land. However, fire events and the 
ecosystem services they impact (e.g. nutrient cycling, water 
movement, and plant and wildlife habitat) move seamlessly 
across public–private boundaries. Thus, regional and national 
management of fire regimes require spatially consistent data 
over a long enough period to understand fire patterns and 
drivers (Short 2015; Nowell et al. 2018; Chuvieco et al. 2019;  
Fusco et al. 2019). For example, fire history metrics can 
inform management of fire-dependent species and ecosys
tems including invasive species, fire behaviour and emissions 
modelling, fire risk analysis, and prescribed fire planning (Liu 
et al. 2010; Addington et al. 2020; Gao et al. 2021). Remotely 
sensed burned area products provide critical information on 
fire locations and extent (Humber et al. 2019; Hawbaker 
et al. 2020a). While Landsat provides a longer record of 
burned area relative to products derived from other sensors 
such as Moderate Resolution Imaging Spectroradiometer 
(MODIS) (Chuvieco et al. 2019), all burned area products 
still require additional processing to summarise and facilitate 
their use in models and decision-making. Fire management 
across the U.S. will benefit from comprehensive, burned area 
data, delivered in a format to facilitate their direct use by 
diverse stakeholders. To date, however, contemporary, 
national fire history metrics have not been produced or 
analysed across the U.S. In this analysis we present contem
porary fire history metrics, specifically, (1) fire frequency, 
(2) time since last burn, (3) year of last burn, (4) longest fire 
free interval, and (5) average fire interval length, derived 
from 37 years of the Landsat Burned Area (BA) Product 
(1984–2020) for the conterminous United States (CONUS). 
As our period of record (37 years) is short for many fire 
regimes across the country, particularly forested ecoregions 
with long fire-free intervals, we also calculate a contempo
rary fire return interval from the proportion of an area that 
burns each year (Higuera et al. 2021). With the resulting 
metrics, we addressed three research questions: (1) How do 
contemporary fire regimes differ by ecoregion and land owner
ship? (2) Are differences in metrics between public and private 
lands explained by inherent differences (e.g. topography and 
climate)? and (3) How can fire history metrics be combined 
with historical or complementary datasets, such as invasive 
species maps, to further facilitate decision-making? 

Methods 

Study area 

Ecoregions were selected as the unit of analysis to summarise 
the spatial variability in each of the fire history metrics 
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across the CONUS (Fig. 1). The U.S. Environmental Protection 
Agency’s level 3 ecoregions (n = 85; Omernik and Griffith 
2014) were consolidated down to 31 ecoregions by combining 
ecoregions that belonged to the same level 2 ecoregion 
(n = 20; Omernik and Griffith 2014). The exception was 
where one or more level 3 ecoregions showed distinct fire 
activity or fire activity more similar to an adjacent ecoregion 
than its level 2 ecoregion. While the metrics were produced 
across all land cover classes, for this analysis, classes that 
could be considered either unburnable or highly managed 
were excluded, including open water, perennial ice/snow, 
developed medium and high intensity, barren, and cultivated 
crops, as defined by the National Land Cover Database 
(NLCD, ver. 2019; Homer et al. 2020) (Fig. 1). The 2019 
developed land classes were assumed to represent the maxi
mum extent over the period. Additional land may have been 
classified as water or agriculture during the 1984–2018 
period; however, we assumed that applications of the metrics 
for decision-making would prioritise the current land cover 
distribution. As of 2019, landcover in the CONUS was domi
nated by shrub/scrub (22%), cultivated crops (16%), herba
ceous (13%), evergreen forest (12%), and deciduous forest 

(9%). Climate patterns vary widely across the CONUS. 
Annual precipitation ranges from 239 mm year−1 in the 
warm desert ecoregion to 1812 mm year−1 in the Coast 
Range ecoregion. Maximum and minimum annual tempera
tures ranged from 11.0 to −2.3°C, respectively, in the Rocky 
Mountain ecoregion to 29.1 and 18.7°C, respectively, in the 
Everglades ecoregion (PRISM Climate Group 2021). 

Landsat burned area products 

The U.S. Geological Survey (USGS) Landsat BA Product 
(Hawbaker et al. 2020a, 2020b) was used to identify burned 
area across CONUS over a 37-year period (1984–2020, 30 m 
resolution). This product represents the longest temporal 
record of burned area extent, mapped with consistent effort 
across CONUS. Both wildfires and prescribed fires are 
mapped, but fire type is not distinguished. It is produced for 
each image with <80% cloud cover in the Landsat Thematic 
Mapper (TM), Enhanced Thematic Mapper (ETM+), and 
Operational Land Imager (OLI) Analysis Ready Datasets 
(ARD). Across CONUS, the scene product has a documented 
omission and commission error of 40% and 28%, respectively, 
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Fig. 1. Ecoregion-based units used to analyse fire history metrics across the conterminous United States. Masked land cover 
classes are shown in white. Mtns: mountains.   
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validated from a Landsat reference dataset, and omission and 
commission error of 19% and 41%, respectively, validated 
from a set of classified high-resolution images (n = 286,  
Hawbaker et al. 2020a). Ecoregion-specific omission errors 
were calculated as the weighted average of the omission 
errors reported by land cover class (Hawbaker et al. 2020a), 
where land cover distribution was defined by the NLCD, 
ver. (2019). Sources of error intrinsic to the image collection, 
such as poor or uneven atmospheric conditions, residual cloud 
or cloud shadow, or surface reflectance conversion errors can 
induce higher than expected rates of commission error in a 
subset of images. Consequently, all classified images were 
visually reviewed and problematic images removed prior to 
consolidating the time series into annual composites (1.4% of 
classified images). A suite of annual BA products was pro
duced from the scene BA products, including a filtered annual 
burn classification. In the filtered burn classification, consec
utive year burns were allowed in regions where vegetation 
regrows rapidly post-burn (i.e. the EPA level 1 Ecoregions 
North American Deserts, the Great Plains, and the Florida 
Everglades (Omernik and Griffith 2014)), but were removed 
or filtered in the remaining level 1 Ecoregions, to avoid 
double-counting fire events in areas where evidence of a 
burn can persist for months to years. The filtered annual 
Landsat BA rasters were used as the inputs from which to 
generate fire history metrics (Hawbaker et al. 2020b). 

Fire history metrics 

Using the Landsat annual BA rasters to represent the pres
ence or absence of a burned area, we calculated a series of 
fire history metrics (30 m resolution) including:  

1. Fire Frequency (FRQ), or the number of times (years) 
each pixel burned over the period of record (Teske et al. 
2021). This value cannot be greater than the number of 
years in the fire history record. For ecoregion and land 
ownership averages, only values one and greater were 
included.  

2. Time Since Last Burn (TSLB) is the number of years 
between the last detection of a burned area within the 
record and the ‘present’, defined as 2020 in this analysis 
(Teske et al. 2021). When averaged for an ecoregion, the 
metric represents the distribution of burned area across 
the time series, where large fires that occurred earlier in 
the time series and have not reburned can bias the aver
age to be longer.  

3. Year of Last Burn (YLB) is the year of the last known or 
identified fire in a location; it corresponds with the TSLB 
for the period of record (Teske et al. 2021). For the pur
poses of this study, the four-digit year was used to desig
nate this information (e.g. YLB = 2015). This value cannot 
be outside the range of years in the fire history record.  

4. Longest Fire Free Interval (LFFI) is the maximum fire- 
free interval length within the record, where a length is 

either the number of years between repeat fire events or 
the length from the start or end of the record to the 
closest fire event. This metric provides additional infor
mation when comparing areas where fire frequency was 
equivalent, but the temporal gaps between the fires was 
not, and together with TSLB can inform expected habitat 
and fuel condition. A value was only calculated for pixels 
with a FRQ of one or more.  

5. Average Fire Interval Length (FIL) is the average length 
of fire-free years between repeat fires within the period of 
record (Ryan 2002), not including the length between the 
ends of the record (1984 and 2020) and the closest fire 
event. When only two fires occurred, this metric equals 
the number of years between them. The metric was only 
calculated for pixels that were mapped as burned at least 
twice across the record and produces a value similar to a 
fire return interval, where fire frequency is high. 

The fire history metrics were mapped across the CONUS and 
summarised for the burnable area within each of the 31 
ecoregions. An area-based estimate of the Contemporary 
Fire Return Interval (FRIc) was calculated as the total area 
(e.g. ecoregion size) divided by the average area burned per 
year (Higuera et al. 2021). For example, if an area of interest 
was 10 000 km2 and an average of 200 km2 burned per year, 
then the predicted FRIc would be 50 years. The ecoregion 
averaged fire history metrics were correlated using a 
Spearman correlation (two-tailed) with a Bonferroni correc
tion to test for overlap in the information provided by the 
different metrics. 

Land ownership analysis 

To demonstrate a potential application of these metrics, we 
compared the fire history metrics of public land to private 
land within each ecoregion. Public land was defined as units 
of land where its owner was identified as a local (2%), state 
(14%), or federal (84%) government entity from the Secured 
Areas Spatial Database (Center for Resilient Conservation 
Science (CRCS) 2021). Per ecoregion, state and local land 
comprised a too small percentage to analyse alone. Land 
protected either by an easement or by a non-governmental 
organisation was considered private land. As fire cause (nat
ural or human) can also show a relationship to land owner
ship, the proportion of burned area caused by humans was 
reported, where fire events, size, and cause were reported by 
the Fire Program Analysis (FPA) Fire Occurrence Database 
(FOD) (1992–2018; Short 2021). 

Furthermore, comparisons of fire metrics between public 
and private land can be complicated if the risk of fire spread 
is inherently different (Joppa and Pfaff 2009). Therefore, 
variables that are known to influence patterns of total 
burned area were summarised by ecoregion and land owner
ship, including annual precipitation, maximum monthly 
vapour pressure deficit (VPD), elevation, slope, and aspect 
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(Holden et al. 2009). We acknowledge that these variables 
primarily influence wildfire instead of prescribed fire. Climate 
variables were derived from the Parameter-elevation 
Regressions on Independent Slopes Model Normals (PRISM 
(1981–2010); PRISM Climate Group 2021). For VPD, each 
pixel represented the maximum monthly VPD normal value. 
Slope, elevation, and aspect were determined from a USGS 
digital elevation model (DEM, 30 m spatial resolution). Aspect 
was converted to folded aspect, where higher values indicated 
more southerly slopes, to better represent radiation loads 
(McCune and Keon 2002): 

Aspect = abs(180 abs(aspect 225))folded (1)  

A non-parametric Mann–Whitney U test, which tests if two 
data samples come from distinct populations, was used to 
determine if the fire metrics, specifically burn frequency 
and TSLB, or the underlying climate and topography signifi
cantly differed between public and private land. The 
Mann–Whitney U tests used a sample of burned points every 
600 m (n = 669 848 points). Climate and topography were 
sampled every 4 km, but not limited to burned area extent 
(n = 326 523 points). We calculated Spearman correlations 
(two-tailed) to further test for correlations between the cli
mate and topography variables themselves (n = 326 523 
points). Bonferroni corrections were applied to all statistical 
tests to account for multiple statistical tests being performed 
simultaneously. Additionally, to test if biases in the location of 
public land across all ecoregions may explain differences in 
fire history metrics, the per-ecoregion public–private differ
ences in the climate and topography were correlated with the 
per-ecoregion public–private differences in fire history metrics 
using a Spearman correlation (two-tailed). 

Integrating contemporary metrics with 
complementary datasets 

Contemporary fire history metrics are especially useful for 
guiding management decisions when compared to a ‘target’ 
fire regime, whether that target is the historical fire regime, 
or a climate-change adjusted target set to restore and main
tain a specific ecosystem condition. In this analysis, the 
LANDFIRE FRI (30 m resolution) was used to represent the 
average period between fires under the presumed historical 
fire regime. The FRI is an output of the Biophysical Settings 
(BPS) models updated for the LANDFIRE 2016 Remap (LF 
2.0.0) (Blankenship et al. 2021) and is calculated as the total 
number of simulation years divided by the total number of 
fires occurring in that cell (Pratt et al. 2006). We calculated 
two metrics that incorporated the historical FRI (FRIh).  

1. The difference in years between the FRIh and TSLB (FRIh – 
TSLB) was calculated as a measure of where future fire is 
most needed to maintain target fire regimes. For instance, 
if the FRIh is 5 years, but a pixel last burned 20 years ago, 
then this metric would equal −15 years.  

2. The number of fire cycles a pixel has missed over the 
record (n = 37 years) relative to the target was also 
derived. We first calculated the expected burn frequency 
or the number of times we would expect a pixel to have 
burned over the period (i.e. 37/FRIh). The observed burn 
frequency was then subtracted from the expected burn 
frequency (37/FRIh – FRQ). Values <1 indicate that a 
fire cycle has not yet been missed. This metric can pro
vide insight into the feasibility of restoring target fire 
regimes. 

Both metrics assume that under a target fire regime, a pixel 
would have burned at least once during the last 37 years, 
meaning that both metrics are meaningful in regions with 
short fire return intervals (e.g. Midwest and Southeast), and 
not meaningful in regions with long fire return intervals 
(e.g. Northeast). Consequently, examples of these metrics 
are shown at a local to regional-scale but not presented for 
CONUS. 

In addition to applications that can facilitate more fire, 
the metrics can also be used to facilitate management of 
invasive species such as cheatgrass (Bromus tectorum) that 
increase fire risk. We compared the fire history metrics with 
the distribution and percent cover (≥15% cover) of the 
invasive grass species cheatgrass across the Great Basin 
(Bradley et al. 2018). Unburnable and highly managed 
land cover types, as described in Study Area above, were 
masked from both datasets before a series of t-tests were 
performed to detect differences in the metrics between areas 
with and without cheatgrass. 

Results 

Ecoregion patterns of fire history metrics 

Over the 37-year period, 11.7% of CONUS burned at least 
once. Within areas burned, 73.4% burned once, 16.7% 
burned twice, 4.9% burned three times, and 5.0% was 
documented as burning four times or more. Within areas 
burned, burn frequency averaged 1.41 with an average time 
since last burned of 13.9 years (Table 1). The proportion of 
each ecoregion mapped as burned over the 37-years ranged 
from 0.7% in the Northeast Mixed Woods to 74.1% in the 
Flint Hills of Kansas (Table 1). Other ecoregions also showed 
a substantial proportion mapped as burned over the time 
series including Southern California (51.9%), the Columbia 
Plateau in eastern Washington State (41.1%), Northern 
Basin and Range in Oregon and Idaho (32.4%), and 
Mediterranean California (28.5%) (Fig. 2, Table 1). Burn 
frequency was highly variable (Fig. 2a). Some ecoregions 
showed a lower proportion of total area burned but a higher 
burn frequency in areas that did burn, suggesting that some 
areas burn repeatedly and are clustered within a portion of 
the ecoregion. For example, in addition to the Flint Hills, 
which showed an average burn frequency or count of 6.8, the 
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Temperate Prairies, Atlantic Coastal Plain, and Everglades 
also showed frequent burning with average burn frequencies 
of 2.1, 2.0, and 1.7, respectively (Table 1). 

The YLB and associated TSLB provide information about 
the time elapsed since the most recent fire (Fig. 2b). The 

Coast Range and Arizona/New Mexico Plateau showed the 
longest average TSLB, of 18.1 and 16.4 years, respectively. 
The Flint Hills and the Sierra Nevada and Klamath Mountains 
showed the shortest TSLB of 5.2 and 8.0 years, respectively 
(Table 1). In the Sierra Nevada and Klamath Mountains, the 

Table 1. For the period 1984–2020, fire history metrics averaged per ecoregion including percent burned, burn frequency (FRQ) for burned 
areas only, time since last burn (TSLB), year of last burn (YLB) using the calendar year, longest fire free interval (LFFI), fire interval length (FIL), 
contemporary fire return interval (FRIc) reported in years, as well as the landcover weighted omission error (W. OE).            

Ecoregion Total 
burnable 

area (km2) 

Burned 
(%, ′84–′20) 

FRQ 
(count) 

TSLB 
(years) 

YLB 
(years) 

LFFI 
(years) 

FIL 
(years) 

FRIc 
(years) 

W. OE  
(%)   

A. Mtns – Piedmont  501 512  3.3  1.20  16.0  2004  27.7  8.7  928.5  46.2 

Atlantic Coastal Plain  185 485  20.1  1.95  13.7  2006  23.8  7.9  94.6  45.1 

AZ/NM Mtns  110 519  19.2  1.21  11.1  2009  25.2  10.1  158.8  31.8 

AZ/NM Plateau  142 854  3.8  1.33  16.4  2004  25.0  9.9  729.1  33.1 

Cascades  135 199  13.9  1.18  11.2  2009  27.8  10.7  225.0  60.3 

Central Plains  67 683  2.3  1.52  12.3  2008  26.9  6.9  1052.3  41.7 

CO Plateau – WY Basin  255 586  5.1  1.24  15.6  2004  25.4  10.6  584.8  54.3 

Coast Range  76 732  4.8  1.22  18.1  2002  29.0  9.8  627.9  25.5 

Cold Deserts  318 762  13.7  1.50  14.0  2006  23.8  10.5  179.6  33.6 

Columbia Plateau  48 084  41.1  1.62  10.0  2010  25.2  9.7  55.6  39.0 

Everglades  15 790  20.5  1.72  14.9  2005  24.2  10.1  104.7  67.3 

Flint Hills  22 905  74.1  6.76  5.2  2015  15.7  5.4  7.4  43.7 

Great Plains  688 653  17.8  1.46  13.1  2007  25.0  9.2  142.6  38.8 

Idaho Batholith  128 823  25.2  1.22  13.5  2006  25.3  12.5  120.4  37.9 

Interior Plateau  165 126  1.3  1.45  12.3  2008  26.8  6.6  1978.6  38.0 

Madrean Archipelago  38 263  18.9  1.40  12.0  2008  25.4  11.0  140.4  33.1 

Mediterranean CA  81 081  28.5  1.34  12.2  2008  27.5  11.0  96.6  41.0 

Midwest Mixed Woods  296 232  3.8  1.39  14.0  2006  27.3  8.5  696.5  41.0 

Mississippi Plains  81 949  4.9  1.20  14.3  2006  26.8  8.6  627.4  47.5 

N. Basin and Range  172 171  32.4  1.56  12.8  2007  24.8  10.4  73.1  35.1 

New England  143 792  1.0  1.05  11.2  2009  27.5  8.4  3671.9  31.0 

NE Mixed Woods  169 674  0.7  1.22  12.6  2007  28.4  7.1  4246.6  35.9 

Ozark-A. Forests  167 845  8.9  1.61  11.4  2009  25.1  7.3  257.6  36.7 

Rocky Mountains  395 872  11.5  1.12  14.6  2005  27.1  11.6  287.7  38.1 

SN – KM  97 909  23.3  1.22  8.0  2012  28.9  15.5  130.8  37.6 

Southeastern Plains  472 639  10.9  1.42  15.1  2005  25.8  7.9  239.4  41.4 

Southern California  30 523  51.9  1.37  13.0  2007  23.8  12.3  52.0  33.5 

Temperate Prairies  186 912  12.9  2.05  12.3  2008  24.7  7.8  139.6  49.0 

TX-LA Coastal Plain  98 769  13.6  1.62  14.6  2005  24.2  8.3  167.4  41.9 

Warm Deserts  369 369  6.1  1.55  15.1  2005  25.1  9.7  390.0  32.0 

WC Prairies  458 162  8.9  1.22  15.1  2005  25.6  11.0  342.4  41.1 

CONUS  6 124 875  11.7  1.41  13.9  2006  25.3  9.5  203.1  40.1 

SN-KM, Sierra Nevada – Klamath Mtns; WC SA, West-Central Semi-Arid; A, Appalachian; N, Northern.  
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short TSLB average is influenced by large recent fire years, 
including 2020, 2018, and 2017, as well as areas that have not 
reburned since older, large fire years such as 2002 and 2008. 
Additionally, the average number of years between repeat fire 
events (FIL) and the longest fire-free interval (LFFI) within the 
record were also provided as metrics. The Flint Hills showed 
the shortest FIL and LFFI, 5.4 and 15.7 years, respectively 
(Fig. 3) Short FIL averages, however, were not limited to 
ecoregions with a high proportion burned. The Interior 
Plateau and Central Plains both had a low proportion burned 
(1.3% and 2.3%, respectively) but repeat burns resulted in 
low FIL averages, 6.6 and 6.9 years, respectively. Within the 
LFFI metric, Southern California, the Atlantic Coastal Plain 
and the Cold deserts all showed short average LFFI, averaging 
23.8 years for all three ecoregions (Table 1). 

When we correlated the ecoregion-specific fire history 
metrics, the LFFI was negatively correlated with FRQ 
(r = −0.73, P < 0.05) and positively correlated with FRIc 
(r = 0.59, P <0.05). The significance of these correlations 
persisted after removing the Flint Hills ecoregion. In general, 

however, except for TSLB and YLB, which present the same 
information in a different format, the fire history metrics were 
largely not significantly correlated with one another, suggest
ing their unique contributions. In Fig. 3, the FRQ, TSLB, FIL, 
and LFFI are all shown for the Flint Hills in Kansas, demon
strating how each metric provides complementary data on the 
contemporary fire regime. Appropriate application of the 
metrics requires consideration of burned area missed by the 
Landsat BA Product. Predicted rates of burned area omission 
ranged from 25% in the Coast Range to 67% in the Everglades 
(Table 1). 

Influence of ownership on fire metrics 

Public land represents 28.7% of the CONUS study area but is 
unevenly distributed across CONUS (Fig. 4). While the Cold 
Desert and Northern Basin and Range are >85% public 
land, the Flint Hills and Temperate Prairies contain <5% 
public land. Ownership-based comparisons of fire history 
metrics are less meaningful in ecoregions with a very low 
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Fig. 2. Patterns of (a) burn frequency 
and (b) time since last burn fire metrics 
across the conterminous United States. 
Unburnable or highly managed land 
cover classes are not masked to show 
the complete dataset.   
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or high percent of public land but can still be relevant for 
regional fire management. Of the 31 ecoregions, 17 had a 
public land percentage of 20–80% and are hereafter referred 
to as the subset. A larger proportion of public land was 
mapped as burned, relative to private land in 19 of the 31 
ecoregions (13 of the 17 subset). Similarly, the FRIc was 
shorter for public than private land in 25 of the 31 eco
regions (13 of the 17 subset), and shorter by an average of 
−136% across all ecoregions (−50% in subset ecoregions;  
Table 2). Prominent examples include Southern California, 
where the FRIc was 47 years on public land in contrast to 
60 years on private land (28% difference); the Sierra Nevada 
and Klamath Mountains, where the FRIc was 113 years on 
public land, but 209 years on private land (84% difference), 
and the Rocky Mountains where the FRIc was much closer, 
277 years on public land compared to 312 years on private 
land (13% difference) (Table 2, Fig. 4). Within areas 
mapped as burned at least once, TSLB on public land was 
significantly shorter for 14 of 31 ecoregions (six of 17 
subset) and significantly longer for three of 31 ecoregions 
(three of 17 subset). The FRQ was significantly longer on 
public lands for nine of 31 ecoregions (two of 17 subset) and 
significantly shorter for five of 31 (two of 17) (Table 2). 

Many of the ecoregions also showed significant public– 
private differences in landscape parameters, including ele
vation (25 of 31 ecoregions, 15 of 17 subset), slope (24 of 31 
ecoregions, 15 of 17 subset), annual precipitation (23 of 31 
ecoregions, 13 of 17 subset), and VPDmax (21 of 31 eco
regions, 13 of 17 subset) (Table 3). The data suggest that 
public–private differences in landscape parameters can help 
explain differences in fire regimes, but this finding, of 
course, does not prohibit landscape management from also 
influencing these differences. As evidence, the proportion of 
public land was negatively correlated with the proportion of 
burned area caused by humans (r= −0.83, Table 2), sug
gesting that public–private differences in fire history metrics 
are also influenced by land use practices. 

We found that when public land had more precipitation 
than private land, it tended to have a lower burn frequency 
(Table 4). Additionally, Southern California, the Sierra 
Nevada-Klamath Mountains, and West-Central Semi-Arid 
Prairies all showed a significant difference in one of the 
burn metrics (TSLB or FRQ) as well as significant differences 
in 3–5 of the landscape parameters (Tables 2, 3). However, 
differences in public–private landscape parameters did not 
necessarily result in differences in fire metrics. The Idaho 
Batholith, Rocky Mountains, and Mediterranean California all 
showed no significant differences in burn metrics but signifi
cant differences in at least three of the landscape parameters. 
Further, some of the landscape parameters were correlated 
with one another across CONUS. Precipitation, for example, 
was negatively correlated with elevation (r = −0.64, 
P < 0.01) and VPDmax (r = −0.67, P < 0.01), and elevation 
was positively correlated with slope (r = 0.39, P < 0.01). 
Where we observed ecoregions with public–private differ
ences in fire regimes, but very little difference in landscape 
parameters, landscape management may be playing a more 
substantial role. The Mississippi Plains and Central Plains all 
showed significant differences in FRQ and TSLB but a signif
icant difference only in slope for the first, and precipitation 
for the second, and both showed >95% of the burned area 
identified as human-caused (Tables 2, 3). 

Comparison of contemporary metrics with 
complementary datasets 

While the fire history metrics can be useful alone, combining 
the metrics with baseline datasets, such as historical or 
modelled fire regimes or vegetation datasets, can provide 
additional insights. The LANDFIRE FRI (FRIh) indicates 
that 53.4% of CONUS has a historical fire return interval 
of ≤37 years. Comparisons of the metrics with the FRIh 
will be more applicable in regions with frequent fire (FRIh 
<37 years). In Fig. 5 we show an example from northern 
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(b) Time Since Last Burn (TSLB), 
(c) average Fire Interval Length (FIL), 
and (d) Longest Fire Free Interval 
(LFFI) for the grassland Flint Hills in 
eastern Kansas. Units are shown in 
years. Masked land cover classes are 
shown in grey.   
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Florida to southern Georgia of how the TSLB and FRIh can be 
subtracted from one another to identify areas most in need of 
fire for restoration. Additionally, the FRIh and FRQ can be 
used to calculate the number of burn cycles missed, where 
target burn cycles are defined by the FRIh. In Fig. 6, we show 
that in northern California, much of the study area had an 
FRIh of 6–15 years, but relative to the documented FRQ, much 
of the area has missed 1–3 fire cycles over the 37-year period. 

When the fire history metrics were compared with cheat
grass cover, we found that portions of the Great Basin with 
>15% cheatgrass cover showed a greater proportion burned 
(37.6% compared to 13.9%) as well as a significantly 

(P < 0.01) shorter FIL, LFFI, TSLB, and YLB and a higher 
burn frequency (Table 5, Fig. 7). We note that discrepancies 
in data collection ranges, however, can complicate compar
isons. While the fire history metrics were derived from the 
1984–2020 period, the cheatgrass distribution was derived 
from data collected between 2005 and 2016. 

Discussion 

While the distribution of burned area and burn frequency 
presented across CONUS is consistent with spatial fire 
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private land. Ecoregion units shown with black bor
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patterns identified by others (Eidenshink et al. 2007; Short 
2015; Giglio et al. 2016), the diversity of fire regimes across 
the U.S. makes it challenging for a single set of comparative 
metrics to adequately describe them. The FRQ, TSLB, and 
YLB metrics are useful across a wide range of fire regimes, and 

can be used to inform risk of wildfire, answer fire-management 
questions, or support fire model parameterisation. The FIL 
and LFFI, alternatively, provide data on the distribution of 
fire events across the period of record and can help guide 
land management in regions with frequent fire, such as the 

Table 2. Average fire metrics calculated for public and private land in each ecoregion.         

Ecoregion Public 
land (%) 

Human-caused 
burned area (%) 

% Burned 
public 

(private) 

FRIc [years] 
public (private) 

FRQ [avg, 
count] public 

(private) 

TSLB [avg, 
years] public 

(private)   

A. Mtns – Piedmont  10.9  95.6  7.9 (2.8)  327.6 (1196.4)  1.44 (1.12)*  16.9 (18.5)* 

Atlantic Coastal Plain  20.6  56.1  34.7 (16.1)  42.8 (140)  2.49 (1.64)*  10.8 (12.3)* 

AZ/NM Mtns  69.7  34.0  21.5 (13.9)  140 (229.5)  1.23 (1.16)*  7.6 (10.8)* 

AZ/NM Plateau  39.6  23.4  5.3 (2.9)  538.6 (949.2)  1.30 (1.36)  15.0 (13.7)* 

Cascades  70.4  22.3  14.6 (12.3)  212.1 (263.2)  1.20 (1.14)  12.8 (12.6)* 

Central Plains  6.7  95.3  10.2 (1.7)  221.9 (1448.9)  1.64 (1.48)*  13.0 (16.3)* 

CO Plateau – WY Basin  79.5  27.1  4.8 (6.1)  616.3 (488)  1.24 (1.24)  11.1 (11.2) 

Coast Range  29.5  55.5  4.1 (4.9)  816.4 (600.1)  1.11 (1.25)  12.1 (15.2) 

Cold Desert  86.8  25.5  13.6 (14.8)  181.6 (167)  1.50 (1.49)  12.1 (12.3) 

Columbia Plateau  19.7  60.6  54.7 (37.8)  39.2 (61.9)  1.73 (1.58)  13.6 (12.9)* 

Everglades  74  46.4  21.5 (17.2)  99.3 (127.8)  1.73 (1.69)  7.7 (9.5)* 

Flint Hills  0.4  97.3  71.3 (74.1)  9.4 (7.4)  5.54 (6.77)*  12.6 (14.6)* 

Great Plains  8.4  80.6  21.0 (17.5)  124.7 (144.5)  1.42 (1.46)*  14.9 (17.8) 

Idaho Batholith  80.6  15.3  27.4 (15.8)  113.1 (165.2)  1.19 (1.42)  9.4 (13.6) 

Interior Plateau  5.2  98.1  7.5 (0.9)  228.7 (3418.7)  2.15 (1.14)*  9.0 (16.3)* 

Madrean Archipelago  70  57.3  17.3 (21.6)  156.6 (117.4)  1.36 (1.46)*  13.8 (15.3)* 

Mediterranean CA  20.4  86.8  46.5 (23.8)  56.6 (118.4)  1.41 (1.31)  9.4 (18.3) 

Midwest Mixed Woods  27.8  82.6  5.2 (3.2)  464.8 (872)  1.52 (1.32)  13.1 (13.1) 

Mississippi Plains  10.1  98.1  7.7 (4.5)  382.1 (685.5)  1.25 (1.19)*  10.8 (12.9)* 

N. Basin and Range  86.1  15.7  33.7 (24.5)  69.6 (105.9)  1.58 (1.43)  8.6 (13.9) 

New England  25.6  95.0  1.5 (0.8)  2284.2 (4658.5)  1.06 (1.04)  8.6 (16.2) 

Northeast Mixed Woods  6.6  96.0  1.0 (0.7)  3095.3 (4630.3)  1.14 (1.22)*  7.6 (5.2) 

Ozark-A. Forests  13.6  95.5  21.7 (6.9)  99.9 (342.8)  1.71 (1.57)*  14.7 (15.4)* 

Rocky Mountains  67.7  33.2  12.0 (10.4)  277.4 (312.1)  1.11 (1.14)  8.3 (12.9) 

S.N. – K. Mtns  70.5  39.1  26.6 (15.2)  113.2 (208.5)  1.23 (1.17)  14.7 (18.4)* 

Southeastern Plains  5.3  93.2  31.4 (9.7)  55.1 (294.8)  2.14 (1.29)*  10.8 (12.2)* 

Southern California  53.7  96.3  60.8 (41.4)  46.9 (59.8)  1.30 (1.49)*  12.5 (13.8) 

Temperate Prairies  4.2  98.4  30.1 (12.2)  61.5 (147.9)  2.00 (2.06)  10.9 (15.0) 

TX-LA Coastal Plain  10  69.6  21.7 (12.4)  80.8 (195.5)  2.11 (1.53)*  11.3 (13.2)* 

Warm Desert  58.8  35.3  5.0 (7.7)  430.6 (344.9)  1.73 (1.39)  12.1 (15.1)* 

WC SA Prairies  30.5  29.9  10.2 (8.3)  293.6 (369.3)  1.24 (1.21)  15.1 (14.2)* 

CONUS  28.7  63.1  15.1 (9.8)  285 (2177)  1.45 (1.66)  12.3 (13.9) 

The subset of ecoregions with public land of 20–80% are shown in bold. The proportion of ecoregion area that is public land and the proportion of burned area that is 
human-caused (in contrast to natural causes) is also provided. Significance was only calculated for the burn frequency (FRQ, burned area only) and time since last burn 
(TSLB) (*, P < 0.01). Contemporary fire return interval: (FRIc), SN-K, Sierra Nevada – Klamath; WC SA, West-Central Semi-Arid; A, Appalachian; N, Northern.  
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Midwest and Southeast. Alternatively, in regions with longer 
fire return intervals, such as the Northeast or high-elevation 
conifer ecosystems across the western U.S., an area-based 
FRIc may provide a better understanding of the contempo
rary fire regime, relative to the pixel-based metrics. Further, 
if fire history metrics are desired at a finer spatial unit, 

alternative base units, such as pyromes (Short et al. 2020) 
can be used. 

The Landsat BA Product has documented omission and 
commission error rates that vary by land cover and propa
gate to the fire history metrics. In regions with rapid post- 
fire recovery, such as grasslands or wetlands, or where low 

Table 3. Ecoregion specific differences between public and private land of average climate variables including annual precipitation (Precip) and 
maximum vapour pressure deficit (VPDmax), as well as average topographic descriptors including elevation, slope, and folded aspect (Aspectf).        

Ecoregion Precip [mm] 
public (private) 

VPDmax [hPa] 
public (private) 

Elevation [m] 
public (private) 

Slope [%] public 
(private) 

Aspectf public 
(private)   

Appalachian Mtns – Piedmont  1285 (1194)*  19.0 (21.6)*  574 (336)*  24.3 (14.0)*  90.7 (89.7) 

Atlantic Coastal Plain  1327 (1293)*  15.3 (16.0)*  14 (18)*  0.7 (0.8)*  60.7 (63.3) 

AZ/NM Mtns  500 (475)*  35.8 (34.5)*  1937 (1988)  21.0 (16.6)*  89.6 (89.5) 

AZ/NM Plateau  301 (264)*  37.4 (38.2)*  1903 (1853)*  9.9 (7.0)*  82.9 (86.4) 

Cascades  1379 (1139)*  23.7 (26.4)*  1318 (1040)*  29.2 (18.9)*  90.3 (88.8) 

Central Plains  915 (958)*  19.2 (19.4)  231 (244)  2.6 (3.0)  74.2 (79.6) 

CO Plateau – WY Basin  305 (308)  34.4 (34.5)  1915 (1884)*  14.6 (12.0)*  87.2 (85.6) 

Coast Range  2309 (1679)*  17.0 (18.8)*  368 (202)*  35.3 (20.5)*  90.4 (89.1) 

Cold Desert  321 (382)*  38.1 (37.4)  1873 (1721)*  15.4 (13.0)*  86.4 (82.8) 

Columbia Plateau  324 (343)  32.5 (32.9)  581 (580)  21.3 (13.9)*  89.8 (88.7) 

Everglades  1343 (1374)*  22.9 (22.4)  2 (3)*  0.0 (0.1)  46.7 (49.3) 

Flint Hills  921 (935)  25.7 (27.6)  341 (386)  5.4 (4.8)  95.9 (90.6) 

Great Plains  416 (624)*  36.1 (35.2)*  1400 (825)*  4.7 (4.4)*  82.5 (82.6) 

Idaho Batholith  740 (511)*  27.3 (31.2)  1690 (1199)*  33.7 (20.0)*  90.2 (88.4) 

Interior Plateau  1207 (1208)  22.2 (22.2)*  181 (209)*  10.0 (8.8)  85.8 (88.5) 

Madrean Archipelago  424 (409)  46.4 (46.9)  1373 (1363)  19.6 (18.1)*  87.8 (84.8) 

Mediterranean CA  619 (579)  38.5 (39.8)*  547 (341)*  28.1 (18.2)*  88.1 (89.9) 

Midwest Mixed Woods  777 (799)*  17.3 (17.6)*  362 (336)*  3.6 (4.5)*  76.5 (80.0) 

Mississippi Plains  1437 (1454)  24.3 (24.0)  46 (60)*  1.7 (2.7)*  62.9 (72.6) 

N. Basin and Range  343 (361)*  35.2 (34.7)*  1562 (1454)*  11.3 (8.3)*  83.9 (81.4) 

New England  1237 (1170)*  23.6 (24.0)*  541 (381)*  17.9 (14.4)  90.5 (89.7) 

Northeast Mixed Woods  1136 (1098)*  17.3 (17.4)*  238 (244)  8.7 (7.9)  85.0 (86.6) 

Ozark-Appalachian Forests  1294 (1204)*  25.5 (26.2)  320 (272)*  16.7 (9.2)*  89.9 (89.5) 

Rocky Mountains  748 (548)*  22.1 (26.5)*  2277 (1754)*  29.7 (19.7)*  89.2 (87.3) 

Sierra Nevada – 
Klamath Mtns  

1288 (1204)  29.8 (34.3)*  1588 (957)*  37.5 (28.4)*  92.4 (92.3) 

Southeastern Plains  1387 (1311)*  26.4 (27.6)*  77 (86)*  4.1 (3.7)  82.3 (83.5) 

Southern California  574 (425)*  35.4 (34.2)*  1119 (552)*  37.5 (21.5)*  93.2 (97.6) 

Temperate Prairies  735 (858)*  20.4 (22.7)*  359 (333)*  4.0 (4.8)*  73.5 (83.0) 

TX-LA Coastal Plain  785 (831)*  33.3 (35.8)*  44 (112)*  2.1 (2.7)*  61.9 (70.7) 

Warm Desert  226 (289)*  53.8 (47.2)*  928 (980)*  12.6 (10.4)*  89.4 (81.5)* 

WC Semi-Arid Prairies  354 (439)*  31.9 (29.5)*  1005 (914)*  8.5 (7.0)*  86.6 (83.1)* 

CONUS  625 (886)  32.0 (27.9)  1417 (576)  17.7 (8.3)  86.4 (83.8) 

The subset of ecoregions with public land of 20–80% are shown in bold. *, P < 0.01, WC, West-Central; N, Northern.  
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intensity or understory fires are common, such as pine plan
tations, omission errors in the Landsat BA Product are higher 
(Vanderhoof et al. 2021) and therefore FRQ may be under
estimated, while TSLB, LFFI, FIL, and FRIc may all be over
estimated. Conversely, commission error in the Landsat BA 
Product is highest in cultivated crops and pasture/hay land 

cover types (Hawbaker et al. 2020a), which may overestimate 
FRQ and underestimate the remaining metrics. Therefore, 
consideration of variable error rates within the Landsat BA 
Product is essential when interpreting fire history metrics. 

The ability and resources to manage wildfire risk, imple
ment prescribed fire, and respond to active wildfires may all 

Table 4. Spearman correlation values testing if the percent difference (%Δ) in the proportion burned, Fire Return Interval (FRIc), frequency 
(FRQ), or Time Since Last Burned (TSLB) between public and private land was correlated with the corresponding percent difference (%Δ) in 
annual precipitation, maximum vapour pressure deficit (VPDmax), elevation, slope, or folded aspect.        

Metric Annual 
precipitation (%Δ) 

VPDmax (%Δ) Elevation (%Δ) Slope (%Δ) Folded 
aspect (%Δ)   

Proportion Burned (%Δ)  0.17  −0.31  0.18  0.05  −0.60 

FRIc (%Δ)  0.04  0.30  −0.15  0.14  0.52 

FRQ (%Δ)  −0.63*  0.18  −0.45  −0.53  −0.13 

TSLB (%Δ)  −0.33  0.29  −0.29  −0.25  −0.08 

Only the subset of ecoregions (n = 17) were included in the correlation. *, P < 0.01.  
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Fig. 5. (a) Time Since Last Burn 
(TSLB, years), (b) historical Fire 
Return Interval (FRIh, years) masked 
to burned area extent, (c) land owner
ship, and (d) the difference between the 
FRIh and TSLB (years), where negative 
values indicate the TSLB is longer than 
expected by the target fire regime, 
defined here as the FRIh. This value 
can be used to identify areas most in 
need of fire for restoration.   

M. K. Vanderhoof et al.                                                                                                       International Journal of Wildland Fire 

1178 



be influenced by patterns of land ownership (Andam et al. 
2008; Starrs et al. 2018). Public land in the majority of 
ecoregions showed a greater proportion mapped as burned, 
a shorter FRIc, and where burns had occurred, a higher 

average burn frequency and shorter average TSLB. However, 
the proportion of burned area attributed as human-caused 
increased as more of the ecoregion was classified as private 
land. Further, the public–private lands, per ecoregion, also 
often showed differences in climate and topography, but the 
relationship between fire history metrics and landscape 
parameters was not consistent across ecoregions, suggesting 
the integrated influence of landscape parameters, land use, 
and land management on public–private differences, and the 
potential opportunity to further engage private landowners in 
fire policy and decision making. Support for prescribed fire 
has been documented among private landowners, for exam
ple, but that support tends to occur when communities are 
aware of the ecological benefits of fire, concerns persist about 
human and property safety, and there is adequate communi
cation on fire logistics (Piatek and McGill 2010; Gordon et al. 
2020). Additionally, while datasets distinguishing fire cause 
are typically biased towards large fires that occurred on 
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Fig. 6. (a) Burn frequency (FRQ, 
count), (b) historical Fire Return 
Interval (FRIh, years), (c) land owner
ship, and (d) predicted number of 
missed fire cycles, calculated from the 
FRQ and FRIh for northern California. 
This value can be used to inform the 
potential for fire to restore a target 
habitat condition.   

Table 5. Fire history metrics averaged for non-cheatgrass and 
cheatgrass areas across the Great Basin with 99% confidence 
interval included in parentheses.     

Metric Cheatgrass 
(≥15% cover) 

Non-cheatgrass 
(<15% cover)   

Proportion burned (%) 37.6 13.9 

Frequency 1.67 (0.002) 1.36 (0.0006) 

FIL 10.4 (0.03) 10.6 (0.04) 

LFFI 23.9 (0.02) 25.5 (0.02) 

TSLB 12.5 (0.02) 12.9 (0.03) 

YLB 2008 (0.02) 2007 (0.03)   
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public land (Short 2015; Fusco et al. 2019), incorporating 
datasets that help distinguish prescribed fires from wildfires 
(Short 2021) can help explain differences in burning rates on 
public versus private lands, as well as potentially distinguish 
where changes in fire regime are attributable to changes in 
land management relative to factors such as climate change. 
For instance, distinguishing shifts in fire history metrics 
in response to climate change may be an easier task in 
ecoregions with a lower proportion of human-caused burned 
area, such as the Cascades, Idaho Batholith, and Northern 
Basin and Range (Table 2). 

The Landsat fire history metrics, alone, or combined with 
target fire regimes, for instance comparing the FRIh with the 
TSLB or combining the FRIh with burn frequency to esti
mate fire cycles missed, may be useful for diverse land 
management applications. Both measures focus on recent 
fire activity instead of modelled vegetation condition, and 

therefore provide data distinct from LANDFIRE’s fire return 
interval departure (FRID; Blankenship et al. 2021). One 
potential application would be to guide land management 
in grasslands across the Midwest, where past fire suppres
sion has led to the expansion of invasives and woody plant 
species (Engle et al. 2008), as demonstrated by our result 
that areas dominated by cheatgrass in the Great Basin 
showed more frequent fire, a finding supported by Bradley 
et al. (2018). A second potential application would be sup
porting management of southeastern longleaf pine (Pinus 
palustris) and other southern upland pine (P. echinata, 
P. taeda, and P. elliottii) forest communities for at-risk wild
life species that benefit from frequent fire (Van Lear et al. 
2005). However, as the climate continues to change, and 
acts upon current vegetation conditions, it may become less 
appropriate to use historical fire regimes as a target (Liu and 
Wimberly 2016; Perkins et al. 2019). In addition, climate 
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Fig. 7. (a) Cheatgrass (Bromus tectorum, >15% cover) distribution across the Great Basin from  Bradley et al. (2018) compared to 
(b) the burn frequency (count) fire history metric.   
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change can also make it more challenging to meet pre
scribed fire goals, for example, rising summer temperatures 
across the Southeast will reduce the number of days suitable 
for prescribed burning (Chiodi et al. 2019; Kupfer et al. 
2020). Therefore, as climate-induced shifts in fire activity 
continue, future predictions of fire risk and management 
will benefit from the direct use of contemporary fire history 
metrics and comparing contemporary fire history metrics to 
data-driven target fire regimes that maximise ecosystem 
resiliency instead of historical fire regime data. 

Conclusion 

Fire history metrics such as burn frequency, time and year 
since last burn, and fire regime characteristics (LFFI, FIL, 
and FRI) enable rapidly increasing amounts of burned area 
data to be collapsed into a handful of data layers that can be 
used efficiently by diverse stakeholders. Fire regimes vary 
widely across the U.S., and the appropriate or useful fire 
metric(s) may depend on the local or regional amount and 
frequency of burning. The difference in fire regimes between 
public and private land across the U.S. highlights the impor
tance of accurately tracking fire activity across both public 
and private land. The fire history metrics presented here 
may help manage future fire risk, meet national fire-related 
goals, and prioritise areas to focus increased engagement 
with private landowners. Continued progress towards accu
rate and complete mapping of burned area, and the consoli
dation of burned area products into useful and relevant fire 
history metrics is critical to manage ecosystem condition 
under climate change and control the growing economic 
costs of wildfire damage and suppression. 
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