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BARA: cellular automata simulation of multidimensional 
smouldering in peat with horizontally varying moisture contents 
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ABSTRACT 

Background. Smouldering peatland wildfires can last for months and create a positive feedback 
for climate change. These flameless, slow-burning fires spread horizontally and vertically and are 
strongly influenced by peat moisture content. Most models neglect the non-uniform nature of 
peat moisture. Aims. We conducted a computational study into the spread behaviour of 
smouldering peat with horizontally varying moisture contents. Methods. We developed a 
discrete cellular automaton model called BARA, and calibrated it against laboratory experiments. 
Key results. BARA demonstrated high accuracy in predicting fire spread under non-uniform 
moisture conditions, with >80% similarity between observed and predicted shapes, and captured 
complex phenomena. BARA simulated 1 h of peat smouldering in 3 min, showing its potential for 
field-scale modelling. Conclusion. Our findings demonstrate: (i) the critical role of moisture 
distribution in determining smouldering behaviour; (ii) incorporating peat moisture distribution 
into BARA’s simple rules achieved reliable predictions of smouldering spread; (iii) given its high 
accuracy and low computational requirement, BARA can be upscaled to field applications. 
Implications. BARA contributes to our understanding of peatland wildfires and their underlying 
drivers. BARA could form part of an early fire warning system for peatland.  

Keywords: cellular automata, climate change, fire, hydrology, modelling, peat moisture, 
peatlands, wildfires. 

Introduction 

Smouldering is a flameless and slow-burning fire that spreads both horizontally and 
vertically and occurs at a lower temperature than flaming combustion (Rein 2013). 
Owing to these differences, smouldering peatland wildfires produce haze that spreads 
to inhabited regions and affects people’s health (Rein 2013; Huang et al. 2015; Hu et al. 
2018). These wildfires create positive feedbacks to climate change by releasing carbon 
that is naturally stored in peat and cannot be reabsorbed by the ecosystem (Johnston 
et al. 2012; Rein 2013; Turetsky et al. 2015). 

Peat moisture content (MC) is widely recognised as the primary factor influencing 
smouldering peatland wildfires (Rein 2013; Mezbahuddin et al. 2023), as it affects 
ignition limits and spread rates (Frandsen 1987; Huang et al. 2015; Christensen et al. 
2020). In peatlands, the peat MC varies both spatially (horizontally and vertically) and 
temporally (Meingast et al. 2014; Prat-Guitart et al. 2016, 2017). These MC variations are 
influenced by topography, surface vegetation, hydrological processes and weather con
ditions (Prat-Guitart et al. 2016, 2017; Bechtold et al. 2020). Vertically, peat is wetter at 
deeper points owing to their proximity to the groundwater table (GWT) (Fig. 1a). 
Horizontally, variations in peat MC are more intricate (Fig. 1b) and influenced by factors 
such as topography and surface vegetation (Prat-Guitart et al. 2017). 

The complex interplay of MC variations has hindered the development of modelling 
studies focusing on smouldering peat with spatially varying MCs. To date, studies 
involving spatially varying MCs in smouldering peat models have been constrained by 
the complexities associated with multi-dimensional spread (Huang and Rein 2015; Prat- 
Guitart et al. 2016). However, given the significant influence of peat MC on smouldering 
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behaviour, there is a need to overcome these challenges and 
advance our understanding of the phenomenon. 

Considering these complexities at a large scale, computa
tional studies of smouldering using physics-based models such 
as computational fluid dynamics are too expensive (Purnomo 
2022; Yuan et al. 2023). Therefore, in the present work, we 
explored cellular automata (CA). CA are discrete models that 
use simple rules and limit the interactions of entities within a 
domain (von Neumann 1967; Wolfram 1984). Unlike physics- 
based models that use fundamental principles for their rules, 
CA can use a number of approaches, such as empirical and 
statistical, as the governing rules. 

CA consider a grid of cells, each of which has a certain state 
(e.g. peat, smouldering, or burnt) that is updated over discrete 
time steps. Each cell in CA affects only a few neighbouring 
cells, whereas in physics-based models, each cell could affect 
all the cells in the grid; thus, the number of computations in 
CA can be minimal. By using simple rules and limiting the 
reach of interactions between cells, CA provide a computa
tionally efficient way to simulate complex phenomena; they 
require fewer resources but can achieve equivalent results. 

CA have been extensively used to model wildfires, and 
many aspects and phenomena (e.g. crown fire, firebrands) 
have been successfully simulated by implementing different 
rules (Clarke et al. 1994; Karafyllidis and Thanailakis 1997;  
Malamud et al. 1998; Alexandridis et al. 2011; Collin et al. 
2011; Trunfio et al. 2011; Ntinas et al. 2017). Unlike flaming 
fires, smouldering fires have been the focus of few studies 
involving the application of CA (Belcher et al. 2010;  
Fernandez-Anez et al. 2017, 2019; Purnomo et al. 2021,  
2023; Widyastuti et al. 2021). 

Among these works, only heat accumulation and bond 
percolation approaches (see details in Purnomo 2022) have 
been used for the rules in CA. In heat accumulation CA, each 
cell has an intrinsic value on which its state is based. A cell 
changes state when its intrinsic value exceeds a threshold 
(Purnomo 2022). The intrinsic value of each cell is updated 

depending on the intrinsic values of neighbouring cells. In 
bond percolation CA, a cell changes state probabilistically 
when conditions are met (e.g. making contact with a cell 
with a different state; Purnomo 2022). 

The model in Belcher et al. (2010) used bond percolation 
CA to simulate smouldering peat with uniform and constant 
MC. This model took into account the probability of ignition 
and extinction, which were dependent on the oxygen concen
tration. It was designed to explore fire activity over millennia, 
based on variations in Earth’s oxygen concentration. 

The model in Fernandez-Anez et al. (2017, 2019) used 
heat accumulation CA and considered drying, pyrolysis and 
oxidation thresholds, mimicking the physical phenomena of 
smouldering. This model focused on uniformly moist peat 
and investigated smouldering behaviour under different 
conditions, including downwind, upwind and limited oxy
gen concentrations. 

The model in Widyastuti et al. (2021) used an agent- 
based method that is similar to bond percolation CA to 
simulate peatland wildfires at the field scale, encompassing 
both flaming and smouldering. This model considered peat 
MC and GWT to determine the associated probabilities. 
However, it only examined the effects of uniform and con
stant peat MC and GWT, without considering their spatial 
and temporal variations. 

The model in Purnomo et al. (2021) also used bond 
percolation CA to simulate field-scale peatland wildfires 
that considered both flaming and smouldering. The proba
bilities involved in the model were calibrated against a 
semi-physical model and experiments. The model also inves
tigated the impact of peat MC on smouldering severity, but 
did not account for variations in MC. 

Building on their earlier work, Purnomo et al. (2023) 
advanced the model in Purnomo et al. (2021) by incorpo
rating temporal variations in peat MC. This updated model 
explored the effects of such variations on smouldering sever
ity over extended periods. However, the spatial variations in 
peat MC were not considered in this particular model. 

Existing literature on CA models for smouldering pre
dominantly focuses on uniform MC. Furthermore, these 
models solely address the horizontal spread of smouldering, 
neglecting its vertical spread. The current paper presents a 
novel approach by utilising CA to simulate smouldering peat 
with horizontally varying MCs, while also incorporating its 
multidimensional spread. This is the first study to consider 
both the spatial variability in MC and the comprehensive 
spread of smouldering within a CA framework. 

Methods 

The cellular automata model 

In this work, we developed a CA model to simulate the 
multidimensional spread of smouldering peat (not a 3D 
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Fig. 1. (a) Peat MC measured at three different depths, 5, 10 and 30 cm, 
within a 30-day period in a peatland in New Zealand. This MC profile was 
extracted from the work of  Campbell et al. (2002). (b) Horizontal 
MC variations (top view) observed in a peatland in Ireland. This MC profile 
was extracted from the work of  Prat-Guitart et al. (2017).  
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model in its full essence to minimise computational cost) with 
horizontally varying MCs. From here on, we refer to the model 
in this work as BARA, which originates from the term for 
‘smouldering’ in Indonesian. BARA integrates a heat accumu
lation approach to model heat transfer (mimicking heat trans
fer from burning fuel to unburnt fuel) and a bond percolation 
approach to introduce uncertainty (related to the variability in 
nature, e.g. caused by landscape heterogeneity), adapted from  
Fernandez-Anez et al. (2019); thus, BARA is a stochastic 
model. In BARA, the intrinsic values of cells were updated 
every time step based on the intrinsic values of their neigh
bours, and the states of cells were updated probabilistically 
when their intrinsic values exceeded predetermined thresh
olds. We used the von Neumann neighbourhood (simplest 
neighbourhood to minimise computational cost), which 
includes the four cells adjacent to the centre cell: north (N), 
south (S), west (W) and east (E) as shown in Fig. 2a (see Table 1 
for the information of variables in the figure). 

States and rules of BARA 

BARA considers three states: peat (P), smouldering (S) and 
burnt out (B). These states represent simplified stages of 
smouldering fire. In physical terms, the peat state represents 
undisturbed peat that can transition to the smouldering state 
when it is burning. Once the full depth of peat is consumed, 
smouldering cells are extinguished, and cells change to the 
burnt out state. Each cell in BARA has an intrinsic value (H) 
at any given time, which in this work is referred to as a heat 
value, analogous to temperature in physical terms. 
Information on the states and heat values of cells is stored 
in two different computational layers, the fuel and heat 
layers, adapted from Fernandez-Anez et al. (2019). This 
multi-layer approach enables BARA to imitate the physics 
of combustion. The fuel layer mimics the evolution of fuel 
during the combustion (e.g. unburnt fuel, oxidation), and 

the heat layer mimics the heat transfer in fires based on the 
temperature distribution. 

The state change from peat to smouldering depends on the 
H values of cells: when the H values exceed the burning 
threshold (Θ), the peat cells change to smouldering with a 
probability of Ps (smouldering probability). The H values of 
cells are affected by the sum of H received from or given to 
neighbouring cells (Ht). If Ht is greater than zero, then heat 
is given to the neighbours (n); otherwise, heat is received 
from the neighbours to the centre cell (i). The value of Ht 
depends on the difference in H between the cell and its 
neighbouring cells, the number of cells separating the two 
cells (Δl) and the heat transfer coefficient (φ), as shown in  
Eqn 1 (see further details in Supplementary Appendix B). 
However, because we used the von Neumann neighbour
hood, the value of Δlin in Eqn 1 was set to 1. φ determines 
the fraction of ΔH transferred to neighbouring cells, which 
mimics heat transfer coefficients in physical terms. This heat 
transfer depends on the neighbouring cells involved in the 
process; therefore, in spatially non-uniform cases, different 
neighbouring cells have different ΔH and φ. 

H H
l

= ×n
in

in
t (1)  

Heat loss to the surroundings is also considered in BARA and 
depends on the difference between the H values of cells and 
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Fig. 2. (a) Schematic of the rules in BARA. Subscript (n) represents 
the neighbour’s position relative to the centre cell (i), i.e. north (N), 
south (S), east (E) and west (W). Straight arrows represent the heat 
transfer to neighbours. Curvy arrows represent the heat loss to the 
surroundings. (b) Schematic of the state change in BARA from peat 
(P) to smouldering (S) to burnt out (B). The state change from peat to 
smouldering occurs when H exceeds Θ with a probability of Ps. 
Smouldering cells remain in that state for a time period ts after 
which they become burnt out.  

Table 1. The list of variables and parameters used in BARA with 
their units.     

Variable and parameters Symbol Unit   

Smouldering time in BARA ts s 

Heat release rate in BARA QR Non-dimensional 

Heat transfer coefficient in BARA φ Non-dimensional 

Burning threshold in BARA Θ Non-dimensional 

Heat loss coefficient in BARA µ Non-dimensional 

Smouldering probability in BARA Ps Non-dimensional 

Time step Δt s 

Cell size Δx mm 

Horizontal spread rate SH mm/min 

Vertical spread rate Sd mm/min 

Smouldering width WS mm/min 

Moisture content MC Non-dimensional 

Inorganic content IC Non-dimensional 

Reactor thickness d mm 

Bulk density ρb kg/m3 

Organic density ρo kg/m3 

Specific heat c kJ/kg K 

Thermal conductivity k W/m K   
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the H value of the ambient environment (Ho), and the heat 
loss coefficient (µ). Ho is held constant at zero for simplifica
tion purposes, but in nature, ambient conditions are not 
constant. At every time step, an amount of heat (µH) is lost 
from each cell to the surroundings, representing the heat loss 
due to convection and radiation. In general, µ depends on 
wind and surface shape, but it was set constant for simplic
ity. These heat transfer rules are summarised in Fig. 2a. 

We implemented a novel method to introduce the vertical 
spread in BARA in addition to the 2D horizontal spread of  
Fernandez-Anez et al. (2019). The thickness of peat in a cell 
(d) decreases with time while burning owing to the vertical 
spread that consumes it vertically (Fig. 2a). A peat cell 
contains inorganic and organic matter, water and air (see  
Fig. 3), where organic matter is the only combustible com
ponent. A peat cell contains water and inorganic matter 
because peat in nature is wet and has impurities from min
eral content. As peat is a porous medium, air occupies its 
pores; thus, the peat cell has an air component. Every time 
step while a cell smoulders, its organic fraction is consumed 
by a thickness δ. The fire completely consumes one cell of 
peat when the product of the number of time step and δ is 
equal to d. This is implemented by using a smouldering time 
variable (ts). Once peat cells become smouldering cells, they 
continue to burn for a time ts. Smouldering cells become 
burnt out after ts is reached (Fig. 2b). During ts, a smoulder
ing cell generates an amount of heat QR in every time step, 
increasing H; this process reproduces the heat generation of 
fire. However, for simplicity, QR was set to depend only on 
the organic faction. Table 1 summarises variables and 
parameters used in BARA. 

Sensitivity analysis 

The variables used in BARA were selected based on cali
bration against laboratory experiments. However, prior to 
this calibration, we performed a sensitivity analysis to 
determine the importance of each variable and the range 
of variable values that enable the predictions to fit experi
mental results. Both sensitivity analysis and calibration 
were undertaken in a 400 × 400 cell grid, where the 
cell size (Δx) was 1 mm and d was 1.6 cm (see Fig. 2a). 

This domain simulated the experiments used for calibra
tion (40  × 40 × 1.6 cm) in Christensen et al. (2020). The 
cell size selected was the coarsest size that has a small 
difference (less than 10%) in predictions against the pre
dictions by using the tested finest cell size (0.4 mm, see  
Fig. 4). One time step (Δt) in BARA represents 20 s in real 
time, which was selected to satisfy the stability criteria 
given the spatial resolution (Δx). 

The six variables in BARA (Ps, φ, QR, ts, Θ and µ) were 
arranged into four groups of three variables. For the sake of 
efficiency and simplicity, the sensitivity analysis was per
formed by exploring combinations of three variables 
(instead of six), setting the other three as constants, and 
was performed four times. The variables were grouped as 
follows: Group 1 (Ps, φ and Θ); Group 2 (QR, φ and Θ); 
Group 3 (ts, φ and Θ), and Group 4 (µ, φ, and Θ). These 
groups were considered because Ps, QR, ts and µ have 
independent effects on predictions (the change in one 
variable cannot be compensated for by a change of the 
other variable to obtain an equal prediction), whereas the 
effects of φ and Θ on predictions are dependent on one 
another (the change of one variable can be compensated 
for by a change of the other variable to obtain an equal 
prediction). 

The sensitivity analysis is based on smouldering spread 
rate and smouldering width. Thus, the set of values of 
the variables that enable BARA to give spread rate and 
smouldering width similar to the experiments of Christensen 
et al. (2020) were explored. Smouldering width is the distance 
between unburnt and burnt lines that comprise the smoul
dering perimeter. This is an important parameter because 
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Fig. 3. The components present in any one cell in BARA: each cell 
in the model contains organic and inorganic matter, water and air. In 
every time step in smouldering cells, peat with a thickness δ is 
consumed by the fire.  

0.1

1

1 2 3

Horizontal spread rate
(SH) (mm/min)

4

10

R
el

at
iv

e 
er

ro
r 

fro
m

 p
re

di
ct

io
ns

w
ith

 h
ig

he
st

 re
so

lu
tio

n 
(%

)

100

Cell size
0.5 mm 0.75 mm 1 mm 2 mm 4 mm

Fig. 4. Sensitivity analysis of BARA for different cell sizes. BARA 
was run using different cell sizes, and the predicted horizontal spread 
rates (SH) of each scenario (one scenario means one cell size) were 
compared against the prediction when using a cell size of 0.4 mm 
(highest resolution tested). The variation in SH is within 5% when the 
cell size is smaller than 2 mm. From this analysis, a cell size (Δx) of 
1 mm was selected for BARA.  

D. M. J. Purnomo et al.                                                                             International Journal of Wildland Fire 33 (2024) WF23042 

4 



it represents the vertical spread rate of smouldering 
(Christensen et al. 2020). 

Results 

The sensitivity analysis of Group 1 (see Supplementary Fig. 
A1) shows that high Ps values made BARA predict non- 
circular spread (see Fig. 5), whereas low Ps values made 
BARA predict no ignition; the range of usable Ps values is 
narrow (0.08–0.15). Ps was then set to 0.1, at the centre of 
this narrow range. 

Fig. 6 shows the sensitivity analysis of Groups 2 and 3 on 
horizontal spread rate and smouldering width compared 
with the values measured in Christensen et al. (2020). In 
this figure, black regions represents non-circular spread. 
From the sensitivity analysis of Group 2 (see Fig. 6a), the 
range of φ values that enables BARA to predict correctly is 
from 0.05 to 0.2; lower values caused no ignition, whereas 
higher values cause the shape to be non-circular. This rea
soning was also adopted to determine the valid range for Θ, 
which was found to be 0.01–0.2. An increase in QR increases 
the horizontal spread rate (SH). The minimum value of QR 
was set to 1 (corresponding to the ranges of φ and Θ 
values), whereas its upper limit was not found. Of the 
circular pattern predictions, a wide range of spread rates 
can be predicted by BARA by using different values of QR, φ 
and Θ. However, none of the combinations of variables in 
Group 2 can simulate all the smouldering widths (WS) mea
sured in Christensen et al. (2020) (see Fig. 6b), but ts, which 
belongs to Group 3, enabled the prediction of all the smoul
dering widths measured in Christensen et al. (2020) (see  
Fig. 6c). 

The sensitivity analysis of Group 4 shows that µ does not 
affect the horizontal spread rate or the smouldering width 
significantly (within 20% uncertainty compared with above 
100% uncertainty for different φ, Θ, or QR), but µ deter
mines the ignitability of peat in the model. With a very high 
µ, smouldering was not initiated; with µ = 0, there was no 
significant change in the BARA predictions compared with 
the predictions with a higher µ. Therefore, the range of µ 

was set from 0 to 0.9. The upper limit was the maximum µ 
value at which smouldering was initiated, with a minimum 
Θ value and a maximum φ value. According to the sensitiv
ity analysis, the order of importance of the variables in 
BARA is φ and Θ have the same importance, QR and ts 
have the same importance, then Ps and lastly µ. 

The six variables in BARA were calibrated against a set of 
three laboratory experiments (Frandsen 1987, 1997;  
Christensen et al. 2020). Of these variables, Ps is constant 
(Ps = 0.1); φ, QR and ts are variables that were set to depend 
on peat properties because they have similar meaning to the 
physical variables; and Θ and µ are independent variables, 
which were explored within their valid ranges. 

In a cell, ts is the time required to consume the peat 
vertically, at a vertical spread rate of Sd, throughout its thick
ness (d); ts was formulated as shown in Eqn 2. The vertical 
spread rate (Sd) was formulated as shown in Eqn 3, adapted 
from Christensen (2020). In Eqn 3, ρo is the organic density, 
and a1 (–0.31 mm/min) and a2 (110.7 kg mm/m3 min) are 
calibration constants from Christensen (2020). 

t d
S

=s
d

(2) 

S a a= +d 1
2

o
(3)  

The formulation of QR was derived based on the heat 
generated by the combustion of peat in one time step with a 
constant heat generation per unit volume (see Supplementary 
Appendix B for derivation). QR depends on ρo and Sd, as 
shown in Eqn 4, and is non-dimensionalised by a constant 
(a3 = 0.39 m2 s/kg), which makes the minimum value of QR 
equal to one (see the sensitivity analysis section). 

Q a S= × ×R 3 o d (4)  

The formulation of φ (Eqn 5) was derived based on 1D 
transient heat transfer via conduction, which considers 
the effective thermal conductivity (ke), which includes radi
ative heat transfer across pores (see Supplementary 
Appendix B for derivation). φ depends on ρb and the effec
tive specific heat (c) of the inorganic content (IC), MC and 
organic content. c is the sum of the individual specific heat 
values multiplied by the mass fraction. φ was normalised 
within the range of 0.05–0.2 by using constants (a4 = 0.05 
and a5 = 78 912 K/m3 J). 

a a c= + /4 5 b (5)  

Θ was calibrated between 0.01 and 0.2 against the experi
ments of Christensen (2020) under different MC, IC and 
bulk density (ρb) conditions. Meanwhile, µ was calibrated 
between 0 and 0.9 against the experiments of Frandsen 
(1987, 1997). BARA requires only the peat properties MC, 
IC and ρb as inputs, and thus can be used to simulate the 
spread of smouldering under any peat conditions. 

P

S

B

P

S

B

Fig. 5. Results from BARA simulation of smouldering peat, with 
20% MC and 20% IC, both the expected circular ring result (left) and 
the unexpected non-circular result (right). P is peat, S is smouldering 
and B is burnt out.  
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BARA accurately simulated the experiments of  
Christensen et al. (2020) under all MC, IC and ρb conditions 
(some comparisons shown in Fig. 7); the differences 
between the BARA predictions and experiments based on 
horizontal spread rates and smouldering widths are within 

10% (see Fig. 8). In Fig. 8, each blue dot represents the 
comparison between the prediction and the experiment 
under one set of MC, IC and ρb, whereas the black line repre
sents the experiments. When the BARA predictions are equal 
to the values in the experiments, the blue dots overlap the 
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black line. The error bars represent the uncertainty in 
the experiments after two repetitions (x-axis error bar;  
Christensen et al. 2020) and the predictions (Ps makes BARA 
stochastic) after 10 repetitions (y-axis error bar); we found 
that the prediction uncertainty is not significant (see Fig. 8). 

From the calibration, we found that Θ exhibits a strong 
logarithmic correlation (R = 0.91) with thermal inertia 
(kρbc), as shown in Fig. 9. We formulated Θ as shown in  
Eqn 6 with a5 = −1.194 and a6 = 16.599. Fig. 10 shows the 
critical IC and MC of BARA for different µ compared with 
experiments. For low µ values, the critical IC and MC of 
BARA are significantly higher than those of the experiments. 
For high µ values, the critical IC and MC of BARA are 
significantly lower than those of the experiments. When 
µ = 0.1, the critical IC and MC of BARA show good agree
ment with the experiments; thus, µ was set to this value. 

a k c a= exp( ln( ) )5 b 6 (6)  

After calibration, we used BARA to generate blind predic
tions of laboratory experiments on smouldering peat under 
variable dry (0% MC) and wet (60% MC) peat conditions. 
We studied three different spatial distributions of MC: half
tone, stripes and checkerboard, shown in Fig. 11, adapted 
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from Hadden and Rein (2009). The BARA predictions pro
vide good agreement against the experiments on shape 
similarity for the halftone, stripes and checkerboard config
urations as shown in Fig. 12. 

We quantified the error of the BARA predictions against 
the experiments based on the unburnt and burnt areas at 
different times, shown in Fig. 13. These areas were selected 
because the use of smouldering area can cause a compensa
tion effect; the predictions and the experiments have similar 
areas but with significantly different shapes. The error pre
sented in Fig. 13 is the error in unburnt and burnt areas at 
10-min intervals. We found that the BARA predictions had 
average errors of less than 20% for halftone, stripes and 
checkerboard configurations in both unburnt and burnt 
areas. 

Discussion 

Fig. 12a compares the BARA prediction against the experi
ment for the halftone configuration. The smouldering front 
and area in the BARA prediction agree well with that of the 
experiment. The slower spread in wet peat and faster spread 
in dry peat are present in both the BARA prediction and the 
experiment. The shape of the edge in the BARA prediction 
matches the shape in the experiment, which indicates the 
retardation of the spread on the edge as ignition is not across 
the whole width (see Fig. 11). 

For the stripes configuration, there are three complex 
phenomena in the experiment that were accurately pre
dicted by BARA: arc creation, arc stretch and flattening 
(see Fig. 12b). The cause for arc creation is the same as in 
the halftone configuration (ignition protocol). At 1 h after 
ignition, this arc was stretched when the smouldering front 
in the middle burnt the dry peat and accelerated, whereas 

on the edge, the smouldering front was still burning wet 
peat. When the smouldering front reached the subsequent 
section of wet peat 3 h after ignition, it decelerated and was 
overtaken by the front on the edge, exhibiting a flattening 
phenomenon. 

In the checkerboard configuration, BARA accurately pre
dicted changes of spread direction of the smouldering front 
that caused several complex phenomena (see Fig. 12c). At 
2 h after ignition, because there is a change from 
wet–dry–wet to dry–wet–dry configuration, the smouldering 
front in the middle changes direction to spread diagonally to 
the dry peat; this spread creates ear-like shapes of the 
smouldering front. During this diagonal spread, the smoul
dering front on the edge encircled wet peat near the igni
tion, which caused the smouldering front on the edge to 
flatten owing to the merging of forward and backward 
spreads of the smouldering front on edge. The diagonal 
spread was observed again 4 h after ignition, but towards 
the middle; this spread caused another wet peat encircle
ment in the middle, which led to the creation of a step 
profile. 

We found that the errors in burnt area are ~10% higher 
than the errors in unburnt area for the three configurations 
(see Fig. 13). These findings indicate that the rules for 
extinction (corresponding to ts) can still be improved. For 
example, the extinction rules can be improved by calibrating 
BARA against the data of 2D vertical spread when available. 

These results show the good ability of BARA to simulate 
both the horizontal and vertical spread of smouldering in 
peat with horizontally varying MCs (a realistic condition), in 
which a sequence of complex phenomena is involved. BARA 
has a high accuracy (above 80%) in the three MC configu
rations. To simulate 1 h of peat smouldering, BARA requires 
only an average of 3 min of computational time (with a 
2.7 GHz CPU), which is 240 times faster than using 
physics-based models (Yuan et al. 2023). Therefore, BARA 
is a powerful and computationally efficient model to simu
late multidimensional spread of smouldering in peat with 
horizontally varying MCs and can be used to predict its 
progression with faster-than-real-time simulations for miti
gation purposes. 

Smouldering wildfires are field-scale phenomena; thus, 
field-scale modelling is of utmost importance (Santoso et al. 
2022; Robb et al. 2023). As BARA considers the three most 
important factors that affect smouldering (MC, IC and bulk 
density) and mainly uses non-dimensional parameters (see  
Table 1), it can potentially be applied to field conditions 
(considering the spatial and temporal variations in peat 
conditions) and across scales. This can be done, for instance, 
by scaling its non-dimensional parameters (Richter 2019;  
Purnomo 2022), which is a fairly simple task. Therefore, 
BARA has the potential to simulate smouldering wildfires 
at their actual scale. BARA’s accuracy and scalability 
make it a potential component of an operational fire early 
warning system, a crucial tool that is currently lacking. 

Halftone Stripes Checkerboard

Middle part

Edge region Ignition coil
MC boundary

Reg. 1
(wet)

Reg. 2
(dry)

Reg. 3 (wet) wet

wet

wet

1

1

2

2

R
ow

Column
3

3

wet

wetdry

dry

dry

dry

Reg. 1 (wet)

Reg. 2 (dry)

Fig. 11. Top view of configuration of the MC distribution of 
laboratory-controlled experiments of  Hadden and Rein (2009). 
Reg. in the figure represents region. The wet peat has 60% MC, 
whereas the dry peat has 0% MC. The experiments were conducted 
in a 20 × 20 × 6 cm reactor with line ignition at the bottom edge of 
the pictures and smouldering spreading horizontally. In each configu
ration, there are edge regions (red dashed line), regions near the 
reactor sides; a middle part (blue solid line), regions relatively distant 
from the reactor sides; and the MC boundary (yellow solid line), 
locations at which peat with high MC and low MC meet.  
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Recent research has laid the groundwork for such a 
system (Nikonovas et al. 2020, 2022; Wang et al. 2022;  
Mezbahuddin et al. 2023), and BARA’s capabilities position 
it as a valuable addition to advance fire prevention and 
mitigation efforts. 

Conclusion 

We used CA to simulate multidimensional spread of smoul
dering peat with horizontally varying MCs for the first 
time. The model, BARA, was calibrated against laboratory 
experiments in homogeneous MC of Christensen et al. 
(2020). BARA was applied to generate blind predictions 
of the laboratory experiments with non-uniform MCs of  
Hadden and Rein (2009) and accurately reproduced various 

phenomena observed in the experiments, such as diagonal 
spread and wet peat encirclement, which shows the impor
tance of the MC spatial distribution for smouldering beha
viours. These predictions agreed well with the experiments 
of Hadden and Rein (2009) with above 80% accuracy in 
smouldering area. BARA only requires 3 min to simulate 
1 h of peat smouldering, highlighting its potential for field- 
scale applications (Purnomo 2022). Our modelling work 
improves and integrates our current understanding of the 
multidimensional spread of smouldering fires in peats 
with non-uniform MCs. As it is accurate and scalable, 
BARA can potentially form a key part of an operational 
fire early warning system, which is currently lacking, 
although recent research has laid the foundations for such 
a system (Nikonovas et al. 2020, 2022; Wang et al. 2022;  
Mezbahuddin et al. 2023). 
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Fig. 12. Comparisons of top view profiles of 
smouldering between the BARA predictions 
and the infrared images from experiments of   
Hadden and Rein (2009) in (a) halftone, (b) 
stripes, and (c) checkerboard configurations 
(corresponding to  Fig. 11). The comparisons 
are at three different times after ignition. P is 
peat, S is smouldering and B is burnt out.   
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