International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents	Volume 13	Number 1	2004
Notice to Authors	(iii)–(vi)		
Long-term forest fire retardants: a review of quality effectiveness, application and environmental considerations <i>Anna Giménez, Elsa Pastor, Luis Zárate,</i> <i>Eulàlia Planas and Josep Arnaldos</i>	y, 1–15	widely used to reduce ferent factors that influ- retardants have been stu use. This article introdu	retardants are chemical substances the combustibility of fuels. The dif- uence the effectiveness of these fire udied with the aim of improving their uces the state of the art regarding the s involved in the use and effectiveness
Where's the fire? Quantifying uncertainty in a wildfire threat model <i>S. D. Jones, M. F. Garvey and G. J. Hunter</i>	17–25	of fire-prone areas. Su- ical data as inputs. Ina erroneous predictions techniques, possible sco	eat are often used in the management ch models use mapped or geograph- accuracies in these data may lead to of wildfire threat. Using simulation enarios of over- and under-estimating ssed for an Australian wildfire threat
Prescribed fire, soils, and stream water chemistry i a watershed in the Lake Tahoe Basin, California Scott L. Stephens, Thomas Meixner, Mark Poth, Bruce McGurk and Dale Payne	n 27–35	next decades, it is imp fire on stream water of California, stream water burned watersheds whit tions were not change	of prescribed fire forecasted in the portant to learn about the impacts of chemistry. In the Lake Tahoe Basin, er calcium concentrations increased in ereas soluble phosphorus concentra- d. Stream monitoring data indicates uality effects lasted for approximately
Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume <i>Thierry Marcelli, Paul A. Santoni, Albert Simeoni</i> <i>Eric Leoni and Bernard Porterie</i>	; 37–48	the temperature and up a flame of a fire spread laboratory conditions.	s developed to measure in a finest way ward gas velocity distribution within ding across a pine needle fuel bed, in The experimental data were compared nodel of forest fire behavior.
Description of a coupled atmosphere–fire model <i>Terry L. Clark, Janice Coen and Don Latham</i>	49–63	for coupled fire-atmos points in each fuel cell well as the fire line positi shape, it evolves throug	eline motion is presented appropriate phere models. The method uses four l defining both the region burning as tion. Instead of prescribing the fireline gh fire–atmosphere interactions. Tests the methods performance both with sphere interactions.
Estimation of the radiation extinction coefficient of natural fuel beds <i>Gilberto C. Vaz, Jorge C. S. André and</i> <i>Domingos X. Viegas</i>	f 65–71	model requires the prevention coefficient of isotropic beds of pine ratio, we verified that the error by no more than 10 more common in nature. Two alternative formula predominantly horizon	n heat transfer terms in a fire spread revious estimation of the radiation of the fuel bed. For homogeneous and needles in a normal range of packing- the standard estimation formula is in 0%. But for a non-isotropic bed, much e, the error may be significantly larger. ae are thus proposed, respectively for tal and vertical radiation, which are case, to have errors less than 5%.

Ecological impacts of wheat seeding after a Sierra Nevada wildfire <i>Jon E. Keeley</i>	73–78	Post-fire seeding of burned sites had negative ecosystem impacts in this ponderosa pine forest, including loss of native plant diversity and changes in community structure. The mas- sive seeding had a positive effect on reducing first year alien invasion. Negative impacts may continue in subsequent years because of the ecological vacuum created by the loss of the non-persistent variety of cereal grass and extensive thatch that could contribute to repeat fires.
Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands <i>Martín De Luis, Manuel J. Baeza,</i> <i>José Raventós and José C. González-Hidalgo</i>	79–87	Because of increased fire frequency, gorse shrublands have expanded significantly in western Mediterranean regions. Mediterranean gorse (<i>Ulex parviflorus</i>) is a fire-prone com- munity and its presence increases the risk that new fires might occur. Our results show mature gorse shrublands to be com- munities with high biomass values in which the proportion of fine dead fuel fractions with low moisture content is around 50%. Both the fire-line intensity values and the fire sever- ity values observed can be considered high with respect to those observed in other Mediterranean communities, thus confirming Mediterranean gorse as a high-risk community.
Statistical analysis of fire frequency models for Catalonia (NE Spain, 1975–1998) based on fire scar maps from Landsat MSS data <i>Ricardo Díaz-Delgado, Francisco Lloret</i> <i>and Xavier Pons</i>	89–99	Fire frequency is one of the most relevant patterns character- izing fire regimes of any region in the world. The occurrence in time of fires helps to locate recurrently burned areas and define consequent management plans. A fire history map has been reconstructed for Catalonia (NE Spain) by means of remote sensing images of the last 24 years in order to assist in analyzing fire regime in this region.
On the existence of a steady state regime for slope and wind driven fires <i>Domingos X. Viegas</i>	101–117	This study based on laboratory experiments showed that, whenever wind velocity or terrain slope is high, fire has a dynamic behaviour and its rate of spread changes during fire growth. We demonstrated that a steady-state regime in fire propagation cannot be claimed in the general case and that, even in some nominally permanent and uniform boundary conditions, the rate of spread does not remain constant.
Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA <i>Robin M. Reich, John E. Lundquist</i> <i>and Vanessa A. Bravo</i>	119–129	Methods were developed for estimating fuel loading distribu- tions to a 30 m resolution using a combination of field data, topographic data and Landsat imagery. The models provide potentially useful information to managers that need predic- tions of forest fuel distributions to make decisions regarding fire hazard and risk.
Corrigendum to:		
Assessing woody vegetation cover change in north-west Australian savanna using aerial photography <i>R. J. Fensham and R. J. Fairfax</i> Volume 12, Numbers 3 and 4 (2003),		Certain parameter terms in Table 5 were incorrectly given positive rather than negative values.
Volume 12, Numbers 3 and 4 (2003), pages 359–367	131	